Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

SUPPLEMENTARY MATERIAL

Three in One Sensor: A Fluorescent, Colorimetric and Paper Based Probe for Selective

Detection of Mercury (II)

Emine Gul CANSU ERGUN*

^a Department of Electrical and Electronics Engineering, Baskent University, TR-06810 Ankara, Turkey.

*Corresponding author:

Tel.: +903122466666/1413; E-mail: egulcansu@baskent.edu.tr

NEW JOURNAL OF CHEMISTRY

Elemental	Composition	Report						(a)	Page
Cincia Ma	ne Analunie							X =7	
ongie ma	SS Analysis	DEE: min -	55 may -	1000	0				
lement pre	diction: Off	DDC. mer-		1000.					
umber of i	sotope peaks u	sed for i-FIT	= 3						
10.255570.2		and the second second							
Ionoisotopic	Mass, Odd and	Even Electron	lons		1000 for each m	100			
lements Us	evaluated with 1	results within it	mus (an result	a (up to	roout of each ma	192)			
24-24	1:20-22 N:2	2 0:4-4 1	3: 2-2						
hmet Onal	19454549100	ing the set	12125					3200	10102201
6988_20190	/01_01-03 24 (0.93	1) Cm (15:25)						10	LASONO
00-				465.0	944				410041100
~									
1									
1									
%-									
1 110	2005		722223325		466.0993				
1 (2050		430.2412		467.0956				
1 3	34.1779357.2101	387,1813	431.24	90	468.0965 507.330	551.356	4 595.38	38 621.3126	639.4086
0 hpmhph 320	340 360	380 400	420 440	460	480 500	20 540 5	580 B	0 620	640
0.00	See See	and the	100		440 500 1	the ster of			0.00
linimum:				-5.5	-				
Galor 1 mum 1		100010	5000.0	1000.	0				
lass	Calc. Mass	mDa	PPM	DBE	1-FIT	1-FIT (Norr	n) Formula		
65.0944	465.0943	0.1	0.2	15.5	545.3	0.0	C24 H21	N2 04	62

Figure S1. a) HRMS spectrum, b) ¹H-NMR spectrum, and c) ¹³C-NMR spectrum of the sensor molecule.

Figure S2. Change in the percent quenching amounts in the emission maximum of the sensor upon stepwise additions of 20-40-60-80-100-120-140 and 160 μ L (0.17, 0.33, 0.51, 0.67, 0.83, 1.00, 1.17 and 1.33 mol equivalents) for each ion, (As³⁺, Cd²⁺, Cu²⁺, Fe³⁺, Hg⁺, K⁺, Ni²⁺, Se⁴⁺ and Zn²⁺), and the obtained additional quenching in the emission spectra upon addition of 0.6 eq. Hg²⁺.

Figure S3. a) Emission spectra collected during the titration of 0.24 M sensor with 0.25 M HNO₃ (aq), b) Emission spectra collected during the titration of 0.24 M sensor with Hg^{2+} in 0.25 M HNO₃ (aq), c) Emission spectra collected during the titration of 0.24 M sensor with Hg^{2+} in 0.05 M HNO₃ (aq), d) Linear fitting analysis using data in (c), d) Linear fitting analysis using data in (b).

Figure S4. The control experiment for UV-Vis titration of the 0.24 mM sensor with deionized water.

Figure S5. FTIR spectrum of sensor before (black) and after (red) addition of Hg²⁺.

Figure S6. Emission spectra collected during the titration of tested fluorophore with 10 mM Hg^{2+} , b) Emission spectra collected during the titration of tested fluorophore with water (control experiment). Inset of a: Chemical structure of the tested fluorophore.