Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Metal-free, one-pot synthesis of styrylquinolines *via* Friedländer annulation and sp³ C-H activation using 1,3-dimethylurea and L-tartaric acid (3:1) as deep eutectic solvent

Neeli Satyanarayana,^a Kota Sathish,^a Sakkani Nagaraju,^a Ravinder Pawar,^a Mohmmad Faizan,^a Murgan Arumugavel,^b Thangellapally Shirisha,^a and Dhurke Kashinath^{*a} ^aDepartment of Chemistry, National Institute of Technology, Warangal-506 004, India ^bChemistry Discipline, Indian Institute of Technology, Gandhinagar, Palaj, Gandhinagar-382355, Gurarat, India

Corresponding Author: e-mail: kashinath@nitw.ac.in; kashinath.dhurke@gmail.com Tel. +91-870-2462677; FAX No. +91-870-2459547

S. No.	Contents			
1	Experimental Procedures	1-2		
2	Physical data (Melting points) of known compounds			
3	Physical (melting points) and Spectral data (¹ H, ¹³ C, IR and Mass) of new compounds			
4	¹ H NMR, ¹³ C NMR and Mass spectra of compounds			
5	NOESY data of compounds 7h and 8a , COSY data of compounds 5m and 8a	71-74		
6	Photophysical properties data of the resultant molecules	75		

1. Experimental Procedures:

General: The starting materials were purchased from Sigma-Aldrich, SRL, Spectrochem and SD-Fine and used as they are received. ¹H and ¹³C-NMR spectra are recorded on Bruker 400 MHz spectrometer using CDCl₃ or DMSO- d_6 as solvents and reported in δ ppm. The mass spectra were recorded on Shimadzu LCMS-2020 and Agilent QTOF machine. Melting points were recorded on Stuart melting point apparatus. UV-visible spectra were taken using Agilent-Cary 100 UV-Visible spectrometer. Emission spectra were recorded by Horiba FluoroLog spectrophotometer.

General procedure for the one-pot synthesis of styrylquinoline derivatives:

1.53g of Deep Eutectic Solvent (DES) was prepared by heating 1,3-dimethyl urea (0.975g, 11.11 mmol) + L-tartaric acid (0.555g, 3.7 mmol) at 80°C for 30 min. To this melt, 5-chloro-2-aminobenzophenone (0.231g, 1 mmol) and β -diketone/ketone/piperidone (1 mmol) was added and heating continued for another 30 minutes at 80°C to give the Friedländer annulation product (*in situ*). To the same pot aldehyde (1 mmol) was added and heating continued till the formation of

desired 2-styrylquinoline derivatives (monitoring by TLC). The reaction mixture was cooled to room temperature. Water was added to it and extracted by EtOAc (10X3 mL). The organic layers were separated and dried using sodium sulfate. Solvent was evaporated under vacuum. The crude product obtained was purified by silica gel column chromatography. Elution of the column using petroleum ether-ethyl acetate gave the pure product.

S. No.	Compound No.	M.P °C (Found)	M.P °C (Reported) ⁵⁻⁶
1	5a	206-207	207-208
2	5e	200-201	199-200
3	5f	204-205	205-206
4	5g	142-143	143-145
5	5j	146-147	147-148
6	5k	171-172	170-171
7	5n	164-165	163-164
8	50	161-162	160-161
9	5q	148-150	149–152

2. Confirmation of the reported molecules by reported melting points:

References:

- 1. A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 2. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 1988, 37, 785-789
- 3. S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 2011, 32, 1456-65.
- 4. S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
- 5. D. Kumar, A. Kumar, M. M. Qadri, Md. I. Ansari, A. Gautam, A. K. Chakraborti, *RSC Adv.*, 2015, **5**, 2920–2927.
- 6. P. Sarma, S. Saikia, R. Borah, Synth. Commun., 2016, 46, 1187-1196.

3. Characterizations of new compounds

Methyl-6-chloro-2-methyl-4-phenylquinoline-3-carboxylate (3*a*): (*E*)-*Methyl* 6-chloro-4phenyl-2-styrylquinoline-3-carboxylate (5*a*): White solid, mp 206-207 °C, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 2.0 Hz, 1H), 8.08 (d, J = 4.8 Hz, 1H), 7.67 (dd, J = 9.0, 2.4 Hz, 1H), 7.62 (d, J = 7.2 Hz, 2H), 7.53-7.49 (m, 4H), 7.41 - 7.33 (m, 5H), 7.25 (d, J = 16.0 Hz, 1H), 3.60 (s, 3H).

Ethyl-6-chloro-2-methyl-4-phenylquinoline-3-carboxylate (3b): White solid, mp 175–176 °C, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.2 Hz, 1H), 7.57 (d, J = 6.0 Hz, 1H), 7.45–7.42 (m, 4H), 7.27–7.19 (m, 2H), 3.98 (s, 2H), 2.70 (s, 3H), 0.88 (s, 3H); IR (KBr, thin film, cm⁻¹): v_{max} 3085, 2976, 1730, 1580, 1487, 1232, 842.

6-Chloro-2,3-dimethyl-4-phenylquinoline (3c): White solid, mp 210-211 °C, Ph Me 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 1H), 7.53–7.48 (m, 4H), 7.26 – 7.20 (m, 3H), 2.74 (s, 3H), 2.17 (s, 3H); HRMS (ESI, m/z): Calcd. Me For C₁₇H₁₄ClNH⁺ 268.0888, found 268.0879.

Tert-butyl-8-chloro-10-phenyl-3,4-dihydrobenzo[b][1,6]naphthyridine-2(1H)-carboxylate (3f): White solid, mp 178–179 °C, 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.98 NBoc (d, J = 8.9 Hz, 1H), 7.66–7.45 (m, 4H), 7.35 (s, 1H), 7.26–7.23 (m, 2H), 4.43 (s, 2H), 3.82 (t, J = 5.5 Hz, 2H), 3.25 (s, 2H), 1.44 (s, 9H); HRMS (ESI, m/z): Calcd. For C₂₃H₂₃ClN₂O₂H⁺ 395.1531, found 395.1520.

(E)-Methyl 6-chloro-4-phenyl-2-styrylquinoline-3-carboxylate (5a): White solid, mp 206-207 °C, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 2.0 Hz, 1H), 8.08 (d, J = 4.8 Hz, 1H), 7.67 (dd, J = 9.0, 2.4 Hz, 1H), 7.62 (d, J = 7.2 Hz, 2H), 7.53–7.49 (m, 4H), 7.41 – 7.33 (m, 5H), 7.25 (d, J = 16.0 Hz, 1H), 3.60 (s, 3H).

Ph COOMe

OMe

NO₂

Methyl-6-chloro-2-(3-nitrostyryl)-4-phenylquinoline-3-carboxylate (5b): White solid, mp 210-

211 °C, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.8 Hz, 2H), 8.16–8.103 (m, 2H), 7.75 (d, J = 8.8 Hz, 2H), 7.72–7.69 (m, 1H), 7.57 (d, J = 2.4 Hz, 1H), 7.54–7.50 (m, 3H), 7.43 (d, J = 15.6 Hz, 1H), 7.37–7.35 (m, 2H), 3.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 150.2, 147.6, 146.6, 146.5, 142.8, 134.9, 134.2, 133.3, 131.9, 131.3, 130.5, 129.1, 129.0,

128.9, 128.6, 128.5, 128.1, 127.6, 126.7, 125.4, 125.3, 124.1, 52.6; HRMS (ESI, m/z): Calcd. For $C_{25}H_{17}ClN_2O_4H^+$ 445.0950, found 445.0928; IR (KBr, thin film, cm⁻¹): v_{max} 3042, 2958, 1718, 1564, 1527, 1227, 835.

Methyl-6-chloro-2-(4-methoxystyryl)-4-phenylquinoline-3-carboxylate (5c): White solid, mp 169-170 °C, 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.03 (m, 2H), 7.65 (dd, J = 7.2, 2.0 Hz, 1H), 7.57 (d, J = 7.2 Hz, 2H), 7.52–7.50 COOMe (m, 4H), 7.36 (dd, J = 6.0, 1.6 Hz, 2H), 7.13 (d, J = 14.5 Hz, 1H), 6.92 (d, J = 6.8 Hz, 2H), 3.84 (s, 3H), 3.60 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.6, 160.4, 151.6, 146.6, 145.9, 136.6, 135.1, 132.3, 131.4, 131.1, 131.0, 129.2, 129.1, 128.8, 128.5, 127.4, 126.2, 125.2, 121.6, 114.2, 55.3, 52.4; HRMS (ESI, m/z): Calcd. For C₂₆H₂₀ClNO₃H⁺ 430.1132, found 430.1177; IR

(KBr, thin film, cm⁻¹): v_{max} 3065, 2974, 1736, 1603, 1256, 1207, 1028, 829.

Methyl-6-chloro-2-(4-methylstyryl)-4-phenylquinoline-3-carboxylate (5d): White solid, mp 162-163 °C, 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (s, 1H), 8.00 (s, Ph COOMe 1H), 7.66 (d, *J* = 2.0 Hz, 1H), 7.66 (d, *J* = 2.0 Hz, 1H), 7.55–7.53 (m, 2H), 7.52–7.49 (m, 5H), 7.34–7.32 (m, 3H), 3.59 (s, 3H), 2.77 (s, 3H); ¹³C NMR

 $(125 \text{ MHz}, \text{CDCl}_3) \delta 168.6, 154.9, 146.1, 145.6, 135.6, 134.9, 134.2, 132.4, 131.6, 131.2, 131.1, 130.5, 129.1, 128.9, 128.8, 128.5, 128.0, 125.9, 125.2, 124.4, 52.3, 23.7; HRMS (ESI, m/z): Calcd. For C₂₆H₂₀ClNO₂H⁺414.1255, found 414.0342; IR (KBr, thin film, cm⁻¹): v_{max} 3080, 2986, 1729, 1633, 1215, 1177, 820.$

Ethyl-6-chloro-2-(4-methylstyryl)-4-phenylquinoline-3-carboxylate (5h): White solid, mp 162-

163 °C, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 3.2 Hz, 1H), 8.06 (d, J = 9.6 Hz, 1H), 7.66 (dd, J = 6.4, 2.4 Hz, 1H), 7.52–7.50 (m, 6H), 7.38–7.36 (m, 2H), 7.25 (d, J = 3.2 Hz, 1H), 7.19 (d, J = 7.6 Hz, 2H), 4.10 (q, J = 14.0, 6.8 Hz, 2H), 2.38 (s, 3H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 151.5, 146.5, 145.8, 139.1, 136.97, 135.1,

133.7, 132.4, 131.4, 131.1, 129.5, 129.4, 128.8, 128.6, 128.4, 127.6, 126.3, 125.2, 122.9, 61.6, 21.4, 13.7; HRMS (ESI, m/z): Calcd. For $C_{27}H_{22}CINO_2H^+$ 428.1412, found 428.1407; IR (KBr, thin film, cm⁻¹): v_{max} 3050, 2952, 1724, 1621, 1214, 1156, 832.

Ethyl-6-chloro-2-(2-methoxystyryl)-4-phenylquinoline-3-carboxylate (5i): Pale yellow solid, mp 164–165 °C, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08–8.07 (m, 2H), 7.65 (d, J = 8.8 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.50 (s, 4H), 7.38–7.36 (m, 2H), 7.18 (d, J = 15.6 Hz, 1H), 6.92 (d, J = 8.4 Hz, 2H), 4.10 (q, J = 13.8, 6.8 Hz, 2H), 3.84 (s, 3H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.1, 160.3, 151.6, 146.5, 145.8, 136.5, 135.1, 132.2, 131.3, 131.0, 129.4, 129.3, 129.1, 128.7, 128.4, 127.6, 126.2, 125.2, 121.6, 114.2, 61.6, 55.3, 13.7; HRMS (ESI, thin

film, m/z): Calcd. For $C_{27}H_{22}CINO_3H^+$ 444.1361, found 444.1371.

Ethyl-2-(4-bromostyryl)-6-chloro-4-phenylquinoline-3-carboxylate (5l): White solid, mp 189–190 °C, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.19–8.10

(m, 3H), 7.92 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 9.2 Hz, 1H), 7.59–7.57 (m, 5H), 7.44 (d, J = 15.6 Hz, 1H), 7.38 (d, J = 3.2 Hz, 2H), 4.12 (q, J = 13.8, 6.8 Hz, 2H), 0.95 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃+DMSOd₆) δ 169.4, 156.3, 147.4, 141.2, 139.1, 135.8, 134.3, 133.8, 133.0, 132.8, 132.2,

NO₂

131.7, 130.7, 130.0, 128.6, 127.1, 125.7, 124.3, 121.3, 117.4, 60.3, 15.1; HRMS (ESI, m/z): Calcd. For $C_{26}H_{19}BrClNO_2H_2^{+2}$ 493.0433, found 493.9371; IR (KBr, thin film, cm⁻¹): v_{max} 3025, 2980, 1717, 1564, 1073, 835, 678.

Ethyl-6-chloro-2-(3-nitrostyryl)-4-phenylquinoline-3-carboxylate (5m): White solid, mp 176–177 °C, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.20 – 8.12 (m, 3H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.72 (m, 1H), 7.60 – 7.54 (m, 5H), 7.48 – 7.39 (m, 3H), 7.28 (s, 1H), 4.14 (q, *J* = 6.8 Hz, 2H), 0.98 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.8, 150.3, 148.7, 146.4, 146.3, 138.2, 135.0, 134.2, 133.2, 133.1, 131.7, 131.2, 129.7, 129.3, 128.9, 128.5, 127.7,

126.9, 126.7, 125.3, 123.2, 122.0, 61.9, 13.6; HRMS (ESI, m/z): Calcd. For $C_{26}H_{19}ClN_2O_4H^+$ 459.1106, found 459.0182; IR (KBr, thin film, cm⁻¹): v_{max} 2990, 1737, 1604, 1540, 1350, 1256, 829.

Ethyl-6-chloro-2-(2-(furan-2-yl)vinyl)-4-phenylquinoline-3-carboxylate (5p): White solid, mp 160–161 °C, 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 9.0 Hz, 1H), 7.90 (d, J = 15.5 Hz, 1H), 7.65 (dd, J = 9.0, 2.0 Hz, 1H), 7.53–7.49 (m, 4H), 7.46 (d, J = 1.5 Hz, 1H), 7.38–7.37 (m, 1H), 7.36 (d, J = 2.0 Hz, 1H), 7.20 (d, J = 15.3 Hz, 1H), 6.58 (d, J = 3.0 Hz, 1H), 6.47 (dd, J = 3.0, 0

1.5 Hz, 1H), 4.12 (q, J = 18.0, 7.5 Hz, 2H), 0.97 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.6, 154.9, 146.1, 145.6, 135.6, 134.9, 133.0, 132.4, 131.6, 131.2, 131.1, 130.5, 129.0, 128.9, 128.8, 128.5, 128.0, 125.9, 125.28, 124.44, 52.31, 13.67; HRMS (ESI, m/z): Calcd. For $C_{24}H_{18}CINO_{3}H^{+}404.1048$, found 404.1056. IR (KBr, thin film, cm⁻¹): v_{max} 3012, 2982, 1732, 1610, 1542, 1217, 829.

(*E*)-*Ethyl-4-phenyl-2-styrylquinoline-3-carboxylate* (5q): White solid, mp 186–187 °C, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 15.6 Hz, 1H), 7.66–7.62 (m, 1H), 7.55 (d, J = 7.6 Hz, 2H), 7.48 (d, J = 8.4 Hz, 1H), 7.41–7.39 (m, 3H), 7.35–7.23 (m, 7H), 4.02 (q, J = 7.2 Hz, 2H), 0.88 (t, J = 7.2 Hz, 3H); IR (KBr, thin film, cm⁻¹): v_{max} 3075, 2976, 1740, 1615, 1520, 1460, 1055.

(E)-Ethyl-2-(4-chlorostyryl)-6-nitro-4-phenylquinoline-3-carboxylate (5r): yellow solid, mp 170–171 °C, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.01–7.92 (m, 2H), 7.58 (d, J = 8.0 Hz, 1H), 7.42 (s, 8H), 7.29–7.17 (m, 3H), 4.01 (d, J = 6.4 Hz, 2H), 0.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.94, 152.02, 147.51, 147.11, 136.61, 136.42, 136.10, 133.75, 132.94, 132.54, 132.15, 130.36, 130.06, 129.85, 129.51, 128.64, 127.52, 126.27, 125.63, 123.89, 62.73, 14.66; HRMS (ESI, m/z): Calcd. For C₂₆H₁₉ClN₂O₄H⁺ 459.1106, found 459.1107; IR (KBr, thin film, cm⁻¹): v_{max} 3083, 2986, 1736, 1620, 1545, 1452, 1063, 862.

6-Chloro-3-methyl-2-(4-methylstyryl)-4-phenylquinoline (6a): White solid, mp 191–192 °C, 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 9.0 Hz, 1H), 8.00 (d, J = 15.5 Hz, 1H), 7.57–7.52 (m, 5H), 7.50–7.47 (m, 2H), 7.26–7.24 (m, 3H), 2.38 (s, 3H), 2.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.4, 146.2, 144.9, 138.7, 137.0, 136.3, 134.2, 131.4, 130.8, 129.5, 129.3, 129.1, 128.8, 128.0, 127.9, 127.8, 127.4, 124.9, 123.6, 21.4, 16.8; HRMS (ESI, m/z): Calcd. For C₂₅H₂₀ClNH⁺ 370.1357, found 370.1372; IR (KBr, thin film, cm⁻¹): v_{max} 3014, 2985, 2919, 1631, 1572, 1163, 805. 6-Chloro-2-(4-methoxystyryl)-3-methyl-4-phenylquinoline (6b): Yellow solid, mp 174-175 °C,

88% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.03–7.96 (m, 2H), 7.62–7.49 (m, 6H), 7.43 (d, J = 15.6 Hz, 1H), 7.24 (d, J = 7.6 Hz, 3H), 6.93 (d, J = 8.0 Hz, 2H), 3.85 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 155.5, 146.2, 144.9, 137.1, 135.9, 131.3, 130.7, 129.7, 129.3, 129.3, 128.9, 128.7, 128.1, 127.8, 127.7, 127.7, 124.9, 122.3, 114.2, 55.3,

16.8; HRMS (ESI, m/z): Calcd. For $C_{25}H_{20}CINOH^+$ 386.1306, found 386.1321; \Box IR (KBr, thin film, cm⁻¹): v_{max} 2924, 3010, 1627, 1603, 1443, 1171, 831.

6-Chloro-2-(4-chlorostyryl)-3-methyl-4-phenylquinoline (6c): Pale yellow solid, mp 165–166 °C, 92% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 9.0 Hz, 1H), 7.97 (d, J = 15.5 Hz, 1H), 7.85 (s, 1H), 7.60–7.48 (m, 5H), 7.37–7.32 (m, 3H), 7.27 (s, 1H), 7.24 (d, J = 7.0 Hz, 1H), 7.06 (d, J = 2.0 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.0, 154.7, 146.3, 145.2, 144.8, 143.6, 136.8, 135.3, 134.8, 134.1, 130.8, 130.3, 129.2, 128.9, 128.7, 128.4, 127.8, 125.1, 124.8, 16.7; HRMS (ESI, m/z): Calcd. For C₂₄H₁₇Cl₂NH⁺ 390.0811, found 389.9901; IR

(KBr, thin film, cm⁻¹): v_{max} 3064, 2910, 1571, 1420, 721, 702.

6-Chloro-3-methyl-2-(4-nitrostyryl)-4-phenylquinoline (6d): Yellow solid, mp 219–220 °C, 95% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.38 (d, J = 15.0 Hz, 1H), 8.05 (d, J = 9.0 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 7.51–7.45 (m, 6H), 7.27–7.23 (m, 3H), 2.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃+ DMSOd₆) δ 154.2, 148.6, 146.6, 144.9, 136.8, 133.1, 132.8, 132.1, 131.4, 131.2, 129.8, 129.6, 129.3, 128.9, 128.8, 128.2, 127.9, 124.8, 16.8; HRMS (ESI, m/z): Calcd. For C₂₄H₁₇ClN₂O₂H⁺401.1051, found 401.1065; IR (KBr, thin film, cm⁻¹): v_{max} 3010, 298, 1567, 1511, 1337, 1166, 824.

5-(2-(6-Chloro-3-methyl-4-phenylquinolin-2-yl)-vinyl)-2-ethoxyphenol (6e): White solid, mp

152 –153 °C, 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 9.0 Hz, 1H), 7.95 (d, J = 16.5 Hz, 1H), 7.54–7.49 (m, 5H), 7.40–7.36 (m, 2H), 7.25–7.21 (m, 3H), 7.14 (s, 1H), 4.19 (q, J = 14.0, 7.0 Hz, 2H), 2.31 (s, 3H), 1.47 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃+ DMSOd₆) δ 167.6, 149.8, 147.9, 144.1, 141.7, 140.4, 139.8, 139.7, 138.7, 137.7, 136.6, 136.2, 136.0, 135.8, 134.8, 134.0, 130.9, 129.4, 127.9, 127.1,

31 d₆) .7, 1

Ph

Me

OMe

115.6, 61.0, 17.8, 13.5; HRMS (ESI, m/z): Calcd. For C₂₆H₂₂ClNO₂H⁺416.1412, found 416.1404.

6-Chloro-2-(3,4-dimethoxystyryl)-3-methyl-4-phenylquinoline (6f): White solid, mp 175–176 °C, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.05 (m, 2H), 7.59 – 7.53 (m, 4H), 7.43 (d, *J* = 15.6 Hz, 1H), 7.30 – 7.28 (m, 4H), 7.23 (s, 1H), 6.93 (d, *J* = 8.4 Hz, 1H), 3.99 (s, 3H), 3.95 (s, 3H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.5, 155.4, 149.8, 149.1, 146.2, 144.9, 137.0, 136.5, 136.3, 131.3, 130.7, 129.3, 128.8, 128.8, 128.1, 127.8,127.7,127.3, 124.9, 122.6, 121.0, 119.4, 111.2, 110.0, 56.0, 16.8; HRMS (ESI, m/z): Calcd. For $C_{26}H_{22}CINO_2H^+$ 416.1412, found 416.1404; IR (KBr, thin film, cm⁻¹): v_{max} 3029, 2954, 1568, 1261, 1245, 1027, 828.

Dark red solid, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 9.2 Hz, 1H), 7.93 (d, J = 15.6 Hz, 1H), 7.58–7.42 (m, 5H), 7.40–7.24 (m, 3H), 7.2–7.13 (m, 3H), 7.03 (d, J = 6.0 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃+DMSOd₆) δ 198.5, 172.0, 160.0, 152.7, 148.5, 141.4, 141.2, 133.6, 133.5, 132.5, 131.9, 131.7, 130.3, 129.7,

Me N HO O

129.6, 129.4, 129.1, 129.0, 128.3, 127.7, 127.4, 124.7, 118.4, 85.6, 16.4; HRMS (ESI, m/z): Calcd. For $C_{27}H_{18}CINO_3H^+$ 440.1048, found 440.1045; IR (KBr, thin film, cm⁻¹): v_{max} 3395, 3052, 2963, 1720, 1642, 1266, 1088, 748.

2-(2-(1H-Indol-3-yl)vinyl)-6-chloro-3-methyl-4-phenylquinoline (6h): White solid, mp 182–183 °C, 86% yield. ¹H NMR (400 MHz, CDCl₃+DMSOd₆) δ 7.95 (s, 1H), 7.89 (d, J = 10.4 Hz, 3H), 7.78 (d, J = 14.8 Hz, 1H), 7.71–7.64 (m, 5H), 7.42 (d, J = 6.4 Hz, 3H), 7.28 (d, J = 5.6 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃+ DMSOd₆) δ 162.7, 145.3, 142.9, 140.8, 136.5, 136.3, 135.2, 133.9, 133.6, 132.0, 131.1, 130.2, 129.5, 129.1, 128.4, 127.4, 125.8, 124.6, 122.7, 120.7, 110.5, 112.5, 110.8, 17.7, HDMS (ESL, m/z); Collad, Ever C. H. CDN Ht 205, 1210, form d

120.7, 119.5, 113.5, 110.8, 17.7; HRMS (ESI, m/z): Calcd. For $C_{26}H_{19}ClN_2H^+$ 395.1310, found 395.1314; IR (KBr, thin film, cm⁻¹): v_{max} 3301, 3078, 2951, 1651, 1272, 1246, 1075, 742.

7-Chloro-3-(4-methylbenzylidene)-9-phenyl-2,3-dihydro-1H-cyclopenta[b]quinoline (7a): Yellow solid, mp 229–230 °C, 89% yield. ¹H NMR (500 MHz, CDCl₃) Ph δ 8.06 (d, J = 9.0 Hz, 1H), 7.81 (s, 1H), 7.55–7.49 (m, 7H), 7.35 (d, J = 7.5 Hz, 2H), 7.24–7.20 (m, 2H), 3.15(s, 2H), 3.0–2.98 (m, 2H), 2.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.2, 147.2, 142.7, 139.7, 137.6, Me

136.0, 135.9, 134.5, 131.4, 130.8, 129.5, 129.4, 129.3, 129.1, 128.8, 128.3, 127.8, 125.4, 124.4, 28.8, 27.7, 21.4; HRMS (ESI, m/z): Calcd. For C₂₆H₂₀ClNH⁺382.1357, found 382.1353; IR (KBr, thin film, cm⁻¹): v_{max} 3030, 2917, 1600, 1585, 1163, 1075, 826.

7-Chloro-3-(4-methoxybenzylidene)-9-phenyl-2,3-dihydro-1H-cyclopenta[b]quinoline (7b): White solid, mp 168–169 °C, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.8 Hz, 1H), 7.79 (s, 1H), 7.58–7.49 (m, 7H), 7.36 (d, J = 6.8 Hz, 2H), 6.96 (d, J= 8.4 Hz, 2H), 3.85 (s, 3H), 3.17– 3.14 (m, 2H), 3.03–3.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 159.1, 147.2, 142.6, 138.4, 136.0, 132.0, 131.2, 130.9, 130.7, 130.2, 129.4, 129.1, 128.8, 128.3, 127.8, 125.0, 124.3, 114.0, 55.3, 28.7, 27.7; HRMS (ESI, m/z): Calcd. For C₂₆H₂₀ClNOH⁺ 398.1306, found 398.1312; IR (KBr, thin film, cm⁻¹): v_{max} 2974, 2835, 1632, 1604, 1252, 1128, 1028, 830.

4-((7-Chloro-9-phenyl-1H-cyclopenta[b]quinolin-3(2H)-ylidene)methyl)-N,N-dimethylaniline

(7c): White solid, mp 218–219 °C, 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.14 (s, 1H), 8.03 (d, J = 9.0 Hz, 1H), 7.54–7.50 (m, 3H), 7.49–7.46 (m, 3H), 7.27–7.23 (m, 3H), 6.75 (d, J = 9.0 Hz, 2H), 3.01 (s, 6H), 2.63 (t, J = 5.5 Hz, 2H), 1.79 (t, J = 6.0 Hz, 2H); ¹³C NMR (125MHz, CDCl₃) δ 155.5, 149.5, 145.2, 144.8, 136.6, 132.3, 130.9, 130.6, 129.7, 129.3, 129.2, 128.7, 128.0, 127.4, 126.0, 124.5, 111.8,

40.3, 28.5, 28.5, 22.9; HRMS (ESI, m/z): Calcd. For $C_{27}H_{23}ClN_2H^+$ 411.1623, found 411.162; IR (KBr, thin film, cm⁻¹): v_{max} 3385, 3101, 2932, 1613, 1566, 1265, 1163, 822.

6-Chloro-2-(furan-2-ylmethylene)-8-phenyl-1,2dihydrocyclobuta[b]quinoline (7d): Brown solid, mp 198–199 °C, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02

(d, J = 8.8 Hz, 1H), 7.63 (t, J = 2.4 Hz, 1H), 7.57–7.447 (m, 6H), 7.36 (d, J = 6.8 Hz, 2H), 6.53–6.49 (m, 2H), 3.17 – 3.16 (m, 2H), 3.02–2.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 153.8, 143.0, 142.7, 138.8, 136.8, 135.9, 131.4, 130.7, 129.4, 129.0, 128.8, 128.3, 127.8, 124.3, 112.7, 112.6, 112.0, 111.7, 28.4, 27.4; HRMS (ESI, m/z): Calcd.

For C₂₃H₁₆ClNOH⁺ 358.0993, found: 358.0990; IR (KBr, thin film, cm⁻¹): v_{max} 3059, 2942, 2884, 1683, 1537, 1268, 1073, 829.

7-Chloro-3-((E)-3-(4-methoxyphenyl)allylidene)-9-phenyl-2,3-dihydro-1H-cyclopenta

[b]quinoline (7e): Yellow solid, mp 170–171 °C, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13–7.92 (m, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.58–7.39 (m, 5H), 7.25 (d, J = 7.6 Hz, 4H), 6.94 (d, J = 8.0Hz, 2H), 3.75 (s, 3H), 2.95 (d, J = 7.3 Hz, 2H), 2.19 (t, J = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.22, 160.5, 145.6, 145.0, 141.2, 124.2, 122.2, 122.6, 121.7, 120.5, 120.2, 120.1, 128.0, 128.6

141.2, 134.3, 133.2, 132.6, 131.7, 129.5, 129.3, 129.1, 128.9, 128.6, 128.2, 127.6, 124.8, 124.7, 123.0, 114.3, 97.4, 55.3, 27.5, 26.5; HRMS (ESI, m/z): Calcd. For C₂₈H₂₂ClNOH⁺424.1463, found 424.1467; IR (KBr, thin film, cm⁻¹): v_{max} 3068, 2932, 1599, 1583, 1509, 1253, 1173, 818.

7-Chloro-4-(4-methylbenzylidene)-9-phenyl-1, 2, 3, 4-tetrahydroacridine (7f): White solid, mp 185–186 °C, 88% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.20 (s, 1H), 8.04 (d, *J*= 9.0 Hz, 1H), 7.55– 7.47 (m, 5H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J*= 2.5 Hz, 1H), 7.25–7.20 (m, 3H), 2.97 (t, *J* = 5.5 Hz, 2H), 2.65 (t, *J* = 6.0 Hz, 3H), 2.38 (s, 3H), 1.81–1.76 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 154.7, 145.3, 145.1, 137.0, 136.5, 135.4, 134.9, 131.4, 131.0, 130.0, 129.9, 129.8, 129.4, 129.2, 128.9, 128.8, 128.1, 127.6, 124.5, 28.6, 28.2, 22.9, 21.3; HRMS (ESI, m/z): Calcd. For $C_{27}H_{22}CINH^+$ 396.1518, found 396.1514; IR (KBr, thin film, cm⁻¹): v_{max} 3102, 2958, 2863, 1602, 1540, 1169, 820.

7-*Chloro-4-(4-methoxybenzylidene)-9-phenyl-1,2,3,4-tetrahydroacridine (7g):* White solid, mp 174–175 °C, 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (s, 1H), 8.03 (d, *J* = 9.0 Hz, 1H), 7.54–

7.46 (m, 7H), 7.28–7.24 (m, 2H), 6.94 (d, J = 8.0 Hz, 2H), 3.84 (s, 3H), 2.96 (t, J = 5.5 Hz, 2H), 2.64 (t, J = 6.0 Hz, 2H), 1.80 (p, J = 6.0, 5.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 162.3, 159.1, 158.6, 147.2, 142.6, 138.4, 136.0, 135.9, 131.2, 130.9, 130.7, 130.2, 129.4, 129.1, 128.8, 128.3, 127.8, 125.0, 124.3, 114.0, 55.3, 28.7, 27.7; HRMS (ESI, m/z):

Calcd. For $C_{27}H_{22}CINOH^+$ 412.1463, found 412.1467; IR (KBr, thin film, cm⁻¹): v_{max} 3069, 2948, 1602, 1536, 1167, 1031, 832.

7-Chloro-4-(4-chlorobenzylidene)-9-phenyl-1,2,3,4-tetrahydroacridine (7h): White solid, mp 221–222 °C, 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (s, 1H), 8.03 Ph

(d, J = 9.0 Hz, 1H), 7.55–7.52 (m, 3H), 7.51–7.47 (m, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 2.0 Hz, 1H), 7.25–7.23 (m, 2H), 2.93 (t, J = 7.0 Hz, 2H), 2.66 (t, J = 6.5 Hz, 2H), 1.82–1.77 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 154.2, 145.5, 145.1, 136.7, 136.4, 136.2, 132.8, 131.6, 131.1,

129.8, 129.5, 129.2, 129.0, 128.8, 128.6, 128.4, 128.1, 127.7, 124.6, 28.5, 28.1, 22.9; HRMS (ESI, m/z): Calcd. For $C_{26}H_{19}Cl_2NH^+$ 416.0967, found 416.0968; IR (KBr, thin film, cm⁻¹): v_{max} 3080, 2940, 1565, 1474, 829, 820.

4-(4-Bromobenzylidene)-7-chloro-9-phenyl-1,2,3,4-tetrahydroacridine (7i): White solid, mp 237–238 °C, 92% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.16 (s, 1H), 8.02

Ph

Br

(d, J = 9.0 Hz, 1H), 7.54–7.46 (m, 4H), 7.42–7.33 (m, 4H), 7.28 (d, J = 2.0 Hz, 1H), 7.24–7.21 (m, 2H), 2.92–2.90 (m, 2H), 2.64 (t, J = 6.5 Hz, 2H), 1.81–1.76 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 155.2, 149.0, 146.1, 139.3, 137.7, 137.2, 133.8, 132.6, 132.1, 131.3, 130.5, 130.2, 129.8, 129.6, 129.4, 129.1, 128.7, 128.0, 125.6, 29.5, 29.1, 23.9; HRMS (ESI, m/z):

3-((7-Chloro-9-phenyl-2,3-dihydroacridin-4(1H)-ylidene)methyl)-2-hydroxy-4H-chromen-4one (7j): Yellow solid, mp 205–206 °C, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.19 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.52 –7.44 (m, 4H), 7.26 (d, J = 1.6 Hz, 1H), 7.18 (d, J = 6.8 Hz, 3H), 2.89 (t, J = 5.2 Hz, 2H), 2.63 (t, J = 6.0 Hz, 2H), 1.80–1.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 183.4, 172.6, 137.2, 136.3, 135.4, 134.2, 133.9, 133.7, 132.6, 132.3, 132.0, 131.8, 129.9, 129.3, 129.0, 128.9, 128.5, 128.5, 128.6, 127.1, 126.1, 125.8, 122.8, 120.4, 26.6, 22.7, 22.8; HRMS (ESI, m/z): Calcd. For $C_{29}H_{20}CINO_3$ 465.1132, found 463.9975 (M-1); IR (KBr, thin film, cm⁻¹): v_{max} 3420, 3050, 2931, 1651, 1291, 1271, 703.

Tert-butyl-8-chloro-4-(4-methylbenzylidene)-10-phenyl-3,4-dihydrobenzo[b][1,6] naphthyridin

-2(1H)-carboxylate (8a): Pale yellow solid, mp 155–156 °C, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 8.02 (d, *J* = 8.8 Hz, 1H), 7.53 – 7.43 (m, 4H), 7.31 – 7.28 (m, 3H), 7.22 – 7.14 (m, 4H), 4.70 (s, 2H), 4.39 (s, 2H), 2.31 (s, 3H), 1.21 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 145.6, 145.0, 139.3, 137.8, 134.9, 133.6, 132.0, 131.9, 131.0, 130.1, 129.7,

129.1, 128.7, 128.7, 128.6, 128.3, 127.3, 126.0, 124.6, 80.2, 53.8, 44.5, 28.3, 21.3; HRMS (ESI, m/z): Calcd. For $C_{31}H_{29}ClN_2O_2H^+497.1990$, found 497.1991; IR (KBr, thin film, cm⁻¹): v_{max} 3345, 2976, 1689, 1623, 1259, 1148, 832.

Tert-butyl-8-chloro-4-(4-methoxybenzylidene)-10-phenyl-3,4-dihydrobenzo[b][1,6]

naphthyridine-2(1H)-carboxylate (8b): White solid, mp 165–166 °C, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.55 – 7.36 (m, 6H), 7.29 (d, J = 2.0 Hz, 1H), 7.23 – 7.18 (m, 3H), 6.89 (d, J = 8.8 Hz, 2H), 4.72 (s, 2H), 4.39 (s, 2H), 3.78 (s, 3H), 1.22 (s, 9H); ¹³C NMR (100 MHz, CDCl₃+ DMSO-d₆) δ 163.3, 159.6, 152.9, 148.6, 146.8, 144.5, 139.1, 134.3, 132.5, 131.7, 130.1, 129.4, 128.3, 127.8, 126.7, 124.8,

NBoc

122.7, 121.6, 117.8, 71.0, 57.7, 55.7, 50.3, 44.8, 28.1; HRMS (ESI, m/z): Calcd. For $C_{31}H_{29}ClN_2O_3H^+$ 513.1939, found 513.0981; IR (KBr, thin film, cm⁻¹): v_{max} 3411, 2921, 1604, 1254, 1165, 1032, 830.

Tert-butyl-8-chloro-4-(4-hydroxybenzylidene)-10-phenyl-3,4-dihydrobenzo[b][1,6]

naphthyridine-2(1H)-carboxylate (8c): Yellow solid, mp 172–173 °C, 86% yield. ¹H NMR (400

MHz, CDCl₃) δ 8.08–7.93 (m, 2H), 7.54–7.49 (m, 6H), 7.47 (s, 2H), 7.29–7.16 (m, 3H), 4.64 (s, 2H), 4.41 (s, 2H), 1.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 150.3, 145.4, 144.6, 138.8, 136.3, 134.6, 132.1, 131.8, 131.0, 130.9, 130.1, 130.0, 129.0, 128.9, 128.7, 127.2, 125.9, 124.6, 115.6, 80.1, 64.1, 44.5, 28.3; HRMS (ESI, m/z): Calcd. For C₃₀H₂₇ClN₂O₃H⁺ 499.1783,

found 499.1799; IR (KBr, thin film, cm⁻¹): v_{max} 3778, 3348, 3024, 2975, 1633, 1570, 1170, 955, 829.

Tert-butyl-8-chloro-4-(3,4-dimethoxybenzylidene)-10-phenyl-3,4-dihydrobenzo[b][1,6] naphthyridine-2(1H)-carboxyl ate (8d): Pale yellow solid, mp 140–141 °C, 85% yield. ¹H NMR

(400 MHz, CDCl₃) δ 8.08 (s, 2H), 7.54 – 7.45 (m, 4H), 7.29 – 7.21 (m, 3H), 7.03 – 6.96 (m, 2H), 6.86 (d, J = 8.4 Hz, 1H), 4.73 (s, 2H), 4.40 (s, 2H), 3.86 (d, J = 4.4 Hz, 6H), 1.23 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 148.9, 148.7, 145.6, 141.3, 134.6, 134.1, 133.2, 131.9, 131.0, 130.1, 130.1, 129.1, 128.7, 128.7, 128.3, 127.3, 126.0, 122.7, 118.4,

114.7, 111.0, 80.2, 55.9, 50.8, 45.0, 28.3; HRMS (ESI, m/z): Calcd. For $C_{32}H_{31}ClN_2O_4H^+$ 543.2045, found 543.2054; IR (KBr, thin film, cm⁻¹): v_{max} 3345, 3066, 2976, 1683, 1578, 1260, 1160, 1143, 1077, 827.

Tert-butyl-4-(4-bromobenzylidene)-8-chloro-10-phenyl-3,4-dihydrobenzo[b][1,6]

naphthyridine-2(1H)-carboxylate (8e): White solid, mp 168-169 °C, 90% yield. ¹H NMR (400

MHz, CDCl₃) δ 8.04 (s, 1H), 7.99–7.88 (m 1H), 7.53–7.45 (m, 4H), 7.28– 7.25 (m, 3H), 7.21–7.15 (m, 3H), 4.63 (s, 2H), 4.39–3.34 (m, 2H), 1.17 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 156.5, 151.2, 147.0, 141.6, 139.9, 136.6, 136.3, 134.2, 133.9, 133.6, 133.0, 132.2, 132.1, 131.1, 131.0, 130.7, 130.3, 129.3, 128.0, 126.6, 82.4, 60.6, 46.6, 30.3; HRMS (ESI, thin

film, m/z): Calcd. For $C_{30}H_{26}BrClN_2O_2H_2^{+2}$ 562.1012, found 562.9716; IR (KBr, cm⁻¹): v_{max} 3410, 3030, 2974, 1689, 1242, 1149, 832, 703.

Tert-butyl-8-chloro-4-(3-nitrobenzylidene)-10-phenyl-3,4-dihydrobenzo[b][1,6]-naphthyridine-2(1H)-carboxylate (8f): White solid, mp 185–186 °C, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ

8.22 (d, J = 8.8 Hz, 3H), 8.01 (d, J = 8.8 Hz, 1H), 7.51–7.54 (m, 3H), 7.52–7.46 (m, 3H), 7.31 (s, 1H), 7.22–7.18 (m, 2H), 4.65 (s, 2H), 4.44 (s, 2H), 1.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153, 146.5, 145.3, 140.4, 134.9, 134.4, 132.4, 131.5, 131.0, 130.2, 129.7, 129.0, 128.7, 128.7, 128.6, 128.1, 127.4, 127.0, 126.2, 124.4, 123.5, 121.1, 80.3, 55.1,

44.3, 27.9; HRMS (ESI, m/z): Calcd. For C₃₀H₂₆ClN₃O₄H⁺ 528.1685, found 528.1698; IR (KBr, thin film, cm⁻¹): v_{max} 3350, 3060, 2974, 2841, 1693, 1645, 1514, 1150, 834.

Tert-butyl-8-chloro-4-(4-(dimethylamino)benzylidene)-10-phenyl-3,4-dihydrobenzo[b][1,6

Jnaphthyridine-2(1H)-carboxylate (8g): Yellow solid, mp 201–202 °C, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.8 Hz, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.59–7.56 (m, 6H), 7.44 (d, J= 6.0 Hz, 1H), 7.37 (s, 1H), 7.32 (t, J = 6.8 Hz 1H), 6.77–6.71 (m, 2H), 4.85 (s, 2H), 4.46 (s, 2H), 3.04 (s, 6H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 150.0, 145.7, 134.1, 131.9, 131.4, 130.8, 130.1, 130.0, 129.8, 129.1,

Ph NBoc N Me

128.9, 128.7, 128.7, 128.5, 128.3, 126.0, 124.6, 111.9, 111.0, 80.1, 45.3, 44.3, 40.3, 28.2; HRMS (ESI, m/z): Calcd. For $C_{32}H_{32}ClN_3O_2H^+$ 526.2256, found 526.1048; IR (KBr, thin film, cm⁻¹): v_{max} 3382, 2979, 2917, 1693, 1602, 1568, 1169, 818.

4. ¹H NMR, ¹³C NMR and Mass spectra of the new compounds:

Page 12 of 75

6-Chloro-2,3-dimethyl-4-phenylquinoline (3c):

Tert-butyl-8-chloro-10-phenyl-3,4-dihydrobenzo[b][1,6]naphthyridine-2(1H)-carboxylate (3f):

(E)-Methyl 6-chloro-4-phenyl-2-styrylquinoline-3-carboxylate (5a):

Methyl- 6-chloro-2-(3-nitrostyryl)-4-phenylquinoline-3-carboxylate (5b):

Methyl-6-chloro-2-(4-methoxystyryl)-4-phenylquinoline-3-carboxylate (5c):

Page 17 of 75

Methyl -6-chloro-2-(4-methylstyryl)-4-phenylquinoline-3-carboxylate (5d):

Ethyl 6-chloro-2-(4-methylstyryl)-4-phenylquinoline-3-carboxylate (5h):

Ethyl-6-chloro-2-(2-methoxystyryl)-4-phenylquinoline-3-carboxylate (5i):

Page 21 of 75

Ethyl-2-(4-bromostyryl)-6-chloro-4-phenylquinoline-3-carboxylate (5l):

Ethyl 6-chloro-2-(3-nitrostyryl)-4-phenylquinoline-3-carboxylate (5m):

Page 25 of 75

Ethyl 6-chloro-2-(2-(furan-2-yl)vinyl)-4-phenylquinoline-3 carboxylate (5p):

Page 26 of 75

Page 27 of 75

(E)-Ethyl 4-phenyl-2-styrylquinoline-3-carboxylate (5q):

(E)-Ethyl 2-(4-chlorostyryl)-6-nitro-4-phenylquinoline-3-carboxylate (5r):

6-Chloro-3-methyl-2-(4-methylstyryl)-4-phenylquinoline (6a):

6-Chloro-2-(4-methoxystyryl)-3-methyl-4-phenylquinoline (6b):

6-Chloro-2-(4-chlorostyryl)-3-methyl-4-phenylquinoline (6c):

6-Chloro-3-methyl-2-(4-nitrostyryl)-4-phenylquinoline (6d):

(E)-2-(2-(6-Chloro-3-methyl-4-phenylquinolin-2-yl)vinyl)-6-ethoxyphenol (6e):

6-Chloro-2-(3,4-dimethoxystyryl)-3-methyl-4-phenylquinoline (6f):

3-(2-(6-Chloro-3-methyl-4-phenylquinolin-2-yl) vinyl)-2-hydroxy-4H-chromen-4-one (6g):

Page 40 of 75

2-(2-(1H-Indol-3-yl)vinyl)-6-chloro-3-methyl-4-phenylquinoline (6h):

Page 42 of 75

462.0859

420 440 460 480 500 Counts vs. Mass-to-Charge (m/z)

519.0710

520

551.0751

560

540

582.1980

600

580

425.0140

377.0356

380

400

360

1. 0.8

328.2289

340

320

7-Chloro-3-(4-methylbenzylidene)-9-phenyl-2,3-dihydro-1H-cyclopenta[b]quinolone(7a):

7-Chloro-3-(4-methoxybenzylidene)-9-phenyl-2,3-dihydro-1H-cyclopenta[b]quinoline(7b):

4-((7-Chloro-9-phenyl-1H-cyclopenta[b]quinolin-3(2H)-ylidene)methyl)-N,N-dimethylaniline (7c):

6-Chloro-2-(furan-2-ylmethylene)-8-phenyl-1,2dihydrocyclobuta[b]quinoline (7d):

Page 48 of 75

7-Chloro-3-((E)-3-(4-methoxyphenyl)allylidene)-9-phenyl-2,3-dihydro-1H-cyclopenta[b] quinolone (7e):

7-Chloro-4-(4-methylbenzylidene)-9-phenyl-1,2,3,4-tetrahydroacridine (7f):

7-Chloro-4-(4-methoxybenzylidene)-9-phenyl-1,2,3,4-tetrahydroacridine (7g):

7-Chloro-4-(4-chlorobenzylidene)-9-phenyl-1,2,3,4-tetrahydroacridine (7h):

4-(4-Bromobenzylidene)-7-chloro-9-phenyl-1,2,3,4-tetrahydroacridine (7i):

3-((7-Chloro-9-phenyl-2,3-dihydroacridin-4(1H)-ylidene)methyl)-2-hydroxy-4H-chromen-4-one (7j):

Tert-butyl-8-chloro-4-(4-methylbenzylidene)-10-phenyl-3,4-ihydrobenzo[b][1,6]naphthyridine-2(1H)-carboxylate (8a):

Tert-butyl-8-chloro-4-(4-methoxybenzylidene)-10-phenyl-3,4-dihydrobenzo[b]-[1,6]-naphthyridine-2(1H)-carboxylate (8b):

Tert-butyl-8-chloro-4-(4-hydroxybenzyl)-10-phenyl-3,4-dihydrobenzo-[b][1,6]naphthyridine-2(1H)-carboxylate (8c):

Tert-butyl-8-chloro-4-(3,4-dimethoxybenzylidene)-10-phenyl-3,4-dihydrobenzo[b][1,6] naphthyridine-2(1H)-carboxylate (8d):

Tert-butyl-4-(4-bromobenzylidene)-8-chloro-10-phenyl-3,4-dihydrobenzo[b] [1,6]naphthyridine-2(1H)-carboxylate (8e):

Page 66 of 75

---- m/z

504.9216

565.9715

Tert-butyl-8-chloro-4-(4-nitrobenzylidene)-10-phenyl-3,4-dihydrobenzo[b][1,6]naphthyridine-2(1H)-carboxylate (8f):

Tert-butyl-8-chloro-4-(4-(dimethylamino)benzylidene)-10-phenyl-3,4-dihydrobenzo[b] [1,6]naphthyridine-2(1H)-carboxylate (8g):

Page 69 of 75

NOESY of the compound 7h:

7-chloro-4-(4-chlorobenzylidene)-9-phenyl-1,2,3,4-tetrahydroacridine (7h):

plotname: DE-7h-hex_MOMSVID_01_plot01

NOESY of the compound 8a:

Tert-butyl-8-chloro-4-(4-methylbenzylidene)-10-phenyl-3,4-dihydrobenzo[b][1,6] naphthyridin -2(1H)-carboxylate (8a):

COSY of the compound 8a:

COSY of the compound 5m:

Ethyl-6-chloro-2-(3-nitrostyryl)-4-phenylquinoline-3-carboxylate (5m):

Compounds	λ_{Abs} (nm)	$\lambda_{em} (nm)$	Stokes shift (Δλ nm)
5n	375	557	182
50	426	488	65
5p	425	525	100
6b	394	502	108
6f	458	548	90
6h	400	484	84

Table-S1: Photo physical properties data of the resulting acyclic/aliphatic compounds (5a-6h):

Table-S2: Photo physical properties data of the resulting cyclic compounds (7a-8d) :

Compounds	λ_{Abs} (nm)	$\lambda_{em} (nm)$	Stokes shift (Δλ nm)
7a	441	494	53
7b	420	551	131
7c	536	644	108
7d	411	464	53
8a	400	464	64
8c	390	449	59
8d	420	558	138

Table-S3: Data of the solvatochromic effect of compound 7e in various solvents.

solvent	λ_{Abs} (nm)	$\lambda_{em} (nm)$	Stokes shift
			$(\Delta\lambda nm)$
<i>n</i> -Hexane	456	543	87
DCM	498	568	70
CHCl ₃	488	553	65
Acetone	485	585	100
MeOH	496	597	101
MeCN	470	618	148
DMF	514	601	87
DMSO	511	605	94