Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

New Journal of Chemistry

Electronic Supplementary Information

An anthracene-quinoline based dual-mode colorimetric/fluorometric sensor for detection of Fe³⁺ and its application in live cell imaging

Tahereh Tehrani ^a, Soraia Meghdadi ^a, Zohreh Salarvand ^b, Behnam Tavakoli ^a, Kiamars Eskandari^a and Mehdi Amirnasr ^a

^a Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
 ^b Department of Chemistry, Chemistry and Petrochemistry Research Center, Institute of Standard and Industrial Research of Iran (ISIRI), Karaj 3174734563, Iran

Corresponding authors: M. Amirnasr, S. Meghdadi **E-mail addresses*: amirnasr@cc.iut.ac.ir smeghdad@cc.iut.ac.ir Amirnasr ORCID: <u>0000-0002-4232-2097</u> Meghdadi ORCID: <u>0000-0002-2597-9521</u>

Table of Contents

Fig. S1. The retardation factor (R_f) of HAQ in EtOAc/Hexan, 30/70......3 Fig. S2. FT-IR spectrum of the chemosensor HAQ (KBr pellet)......4 Fig. S3. ¹H NMR spectrum of the chemosensor HAQ in DMSO-d₆ at room temperature......4 Fig. S4. ¹³C NMR spectrum of the chemosensor HAQ in DMSO-d₆ at 293.5 K.......5 **Fig. S5.** Absorption spectra of HAQ in DMSO (1.0×10^{-5} M) at room temperature......**5** Fig. S6. Changes in the absorption spectrum of HAQ (1.0×10^{-5} M) in the presence of increasing concentration (0–180 μ M) of Fe³⁺ ion in a DMSO solution......6 Fig. S7. Stern-Volmer plot obtained from HAQ titration with Fe³⁺......6 Fig. S8. The fluorescence spectrum linear range of HAQ (50 μ M) at 386 nm upon addition of Fe³⁺. (Determination of LOD)......7 Fig. S9. The Association constant (K_a) of AQ-Fe³⁺ complex......8 Fig. S10. Job's plot of the AQ-Fe³⁺ complex in DMSO, with the monitoring wavelength set at Fig. S11. ESI-MS spectrum for AQ-Fe³⁺ in DMSO with the peak at m/z = 571 corresponding to X-ray crystallography of HAQ......10 Table S1. Crystal data and structure refinement for chemosensor HAQ......10 Table S2. Selected bond lengths (Å) and angles (°) for chemosensor HAQ......10 Table S3. Structural data of chemosensor HAQ and [(AQ)FeCl₂(H₂O)(DMSO)] complex......11 Fig. 11 Structures and Profiles of frontier molecular orbitals of the HAQ and [(AQ)FeCl₂(H₂O)(DMSO)].....**12-23**

Page

$$\frac{1.5}{3.1} = 0.48$$

Fig. S1. The retardation factor (R_f) of HAQ in EtOAc/Hexan, 30/70.

Fig. S2. FT-IR spectrum of the chemosensor HAQ (KBr pellet).

Fig. S3. ¹H NMR spectrum of the chemosensor **HAQ** in DMSO-d₆ at room temperature.

Fig. S4. ¹³C NMR spectrum of the chemosensor HAQ in DMSO-d₆ at 293.5 K.

Fig. S5. Absorption spectra of HAQ in DMSO (1.0×10^{-5} M) at room temperature.

Fig. S6. Changes in the absorption spectrum of **HAQ** (1.0×10^{-5} M) in the presence of increasing concentration (0–180 μ M) of Fe³⁺ ion in a DMSO solution.

Fig. S7. Stern-Volmer plot obtained from HAQ titration with Fe^{3+} . Ksv = 3.3×10^3 M⁻¹.

Determination of LOD for HAQ as Fe³⁺ chemosensor.

Fig. S8. The fluorescence spectrum linear range of HAQ (50 µM) at 386 nm upon addition of Fe³⁺.

Determination of binding constant for Fe³⁺ complex using Benesi–Hildebrand equation.

Fig. S9. The Association constant (K_a) of **AQ-**Fe³⁺ complex.

$$1/F_{0}-F_{t} = 1/(K_{a} \times (F_{0}-F_{max}) \times [Fe^{3+}]) + 1/(F_{0}-F_{max})$$

 $K_{a} = 3.7 \times 10^{8} M^{-1}$

Fig. S10. Job's plot of the **AQ**-Fe³⁺ complex in DMSO, with the monitoring wavelength set at 486 nm.

Fig. S11. ESI-MS spectrum for **AQ**-Fe³⁺ in DMSO with the peak at m/z = 571.00 corresponding to $\{[(AQ)FeCl_2(H_2O)(DMSO)] + H^+\}$ (calculated m/z = 571.30).

X-ray crystallography of HAQ

Colorless crystals of **HAQ** suitable for X-ray crystallography were obtained by slow evaporation of solution of the ligand in $CH_2Cl_2-CH_3OH$ (4:3 v/v) at room temperature. X-ray data of the **HAQ** were collected on a Stoe IPDS-2T diffractometer with graphite monochromated Mo K α (λ = 0.71073 Å) radiation. Data were collected at 296(2) K in a series of ω scans in 1° oscillations and integrated using the Stöe X-AREA 1.43 software package.¹ The structure was solved by direct methods using SHELXTL-2008.² The non-hydrogen atoms were refined anisotropically by the full-matrix least-squares method on F^2 using the SHELXTL program.² The hydrogen atoms were treated by a mixture of independent and constrained refinements. Details of crystallographic data and refinements of the HAQ chemosensor are summarized in Table S1. CCDC 2003356 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

X-AREA, version 1.30, program for the acquisition and analysis of data, Stoe & Cie GmbH, Darmstadt, Germany, 2005.
 G.M. Sheldrick, Acta Crystallogr. Sect. A 64 (2008) 112-122. DOI: 10.1107/S0108767307043930.

Chemical formula	$C_{24} H_{16} N_2 O$
M _r	347.62
Т (К)	296(2)
λ (Å)	0.71073
Crystal system, space group	Triclinic, <i>P</i> ī
a (Å)	8.8312(18)
<i>b</i> (Å)	16.467(3)
<i>c</i> (Å)	24.385(5)
α (°)	89.63(3)
<i>в</i> (°)	87.94(3)
γ (°)	89.72(3)
<i>V</i> (Å ³)	3543.8(12)
Z, D _{calc} (Mg/m ³)	2, 1.303
Crystal size (mm)	0.21 × 0.11 × 0.07
μ (mm ⁻¹)	0.081
F(000)	1450
θ ranges (°)	2.61-29.64
Absorption correction	Multi-scan
Reflections collected/unique/R _{int}	15362/ 11915/ 0.095
Data/restrains/parameters	11915/0/877
Refinement method	Full-matrix least-squares on F ²
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.109, 0.50
Goodness-of-fit on F ²	0.504
Final R indices [$I>2\sigma(I)$]	<i>R</i> 1 = 0.4154, <i>wR</i> 2 = 0.1089
R indices (all data)	R1 = 0.0565, wR2 = 0.0691
H-atom treatment	H-atoms treated by a mixture of
	independent and constrained
Δho_{max} , Δ $ ho_{min}$ (e Å ⁻³)	0.136, -0.125

Table S1. Crystal data and structure refinement for chemosensor HAQ.

Table S2. Selected bond lengths (Å)) and angles (°) for chemosensor HAQ.
-------------------------------------	---------------------------------------

Bond lengths		Bond angles
C(11)-O(1)	1.207(14)	O(1)-C(11)-N(1) 126.5(9)
N(1)-C911)	1.426(16)	O(1)-C(11)-C(12) 128.0(13)
N(1)-C(1)	1.382(9)	N(1)-C(11)-C(12) 105.5(10)
C(11)-C(12)	1.578(10)	

Table S3.	Bond le	engths (Å) and bo	ond angle	s (°) of H	IAQ and	[(AQ)FeC	Cl ₂ (H ₂ O)(DN	1SO)] com	plex.
-----------	---------	-----------	----------	-----------	------------	---------	-------------------	---------------------------------------	-----------	-------

Compund	Bond lengths		Bond angles		
	Experimental	Theoretical	Experimental	Theoretical	
	C(11)-O(1) 1.207(14)	1.228	O(1)-C(11)-N(1) 126.5(9)	124.3	
	C(11)-N(1) 1.426(16)	1.364	O(1)-C(11)-C(12) 128.0(13)	121.7	
HAQ	C(1)-N(1) 1.382(9)	1.402	N(1)-C(11)-C(12) 105.5(10)	114.1	
	C(6)-N(5) 1.488(11)	1.361	C(6)-C(1)-N(1) 116.2(11)	115.0	
			C(1)-C(6)-N(5) 121.4(9)	118.0	
	Bond lengths	Theoretical	Bond angles	Theoretical	
	N(1)-Fe	2.101	N(1)-C(1)-C(6)	117.2	
	N(5)-Fe	2.206	N(5)-C(6)-C(1)	117.4	
	H ₂ O(1)-Fe	2.230	C(1)-N(1)-C(11)	116.9	
	Cl(1)-Fe	2.331	N(1)-C(11)-C(12)	118.7	
AQ-re	Cl(2)-Fe	2.455	N(1)-Fe-O(1)	86.0	
Complex	O(2)-Fe	2.022	N(1)-Fe-O(2)	95.9	
	N(1)-C(1)	1.405	N(5)-Fe-O(1)	86.5	
	N(1)-C(11)	1.388	N(5)-Fe-O(2)	88.0	
	C(11)-O(3)	1.232	Cl(1)-Fe-O(1)	90.6	
	C(11)-C(12)	1.508	Cl(1)-Fe-O(2)	94.6	
			Cl(2)-Fe-O(1)	82.5	
			Cl(2)-Fe-O(2)	94.1	
			N(5)-Fe-Cl(1)	175.9	
			N(5)-Fe-Cl(2)	87.0	
			N(1)-Fe-Cl(1)	105.2	
			N(1)-Fe-Cl(2)	161.2	
			Cl(1)-Fe-Cl(2)	89.7	
			O(1)-Fe-O(2)	173.7	
			N(1)-Fe-N(5)	77.5	
			C(6)-N(5)-Fe	112.6	
			C(1)-N(1)-Fe	114.6	

MO	Complex	E (eV)	SPIN
LUMO+7		-2.12	

MO	HAQ	E (eV)

Fig. S12 Structures and Profiles of frontier molecular orbitals of the HAQ and [(AQ)FeCl₂(H₂O)(DMSO)].