Electronic Supplementary Material (ESI) for New Journal of Chemistry

Theoretical Prediction of Chiral Actinide Endohedral Borospherenes

Naixin Zhang, ${ }^{\ddagger a, b}$ Ailin Li, ${ }^{\sharp a, b}$ Cong-Zhi Wang, *a Qun-Yan Wu, ${ }^{a}$ Jian-Hui Lan, ${ }^{a}$ Zhi-Fang Chai, ${ }^{a, c}$ Yu-Bao Zhao, ${ }^{b}$ and Wei-Qun Shi ${ }^{* a}$
${ }^{a}$ Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
${ }^{b}$ School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
${ }^{c}$ Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China

[^0]

Figure S1. Low-lying isomers of $\left[\mathrm{Ac} @ \mathrm{~B}_{39}\right]^{2+}$ with the relative energies (eV) at the PBE0/RECP/6-311+G* levels. Light pink and blue spheres represent B and Ac, respectively. All the energies have been corrected for zero-point energies.

Figure S2. Low-lying isomers of $\left[\mathrm{Th} @ \mathrm{~B}_{39}\right]^{3+}$ with the relative energies (eV) at the PBE0/RECP/6-311+G* levels. Light pink and yellow spheres represent B and Th, respectively. All the energies have been corrected for zero-point energies.

Figure S3. Low-lying isomers of $\left[\mathrm{Cf} @ \mathrm{~B}_{39}\right]^{2+}$ with the relative energies (eV) at the PBE0/RECP/6-311+G* levels. Light pink and yellow spheres represent B and Th, respectively. All the energies have been corrected for zero-point energies.

Figure S4. Low-lying isomers of $\mathrm{Ac} @ \mathrm{~B}_{39}$ with the relative energies (eV) at the PBE0/RECP/6$311+G^{*}$ levels. Light pink and blue spheres represent B and Ac, respectively. All the energies have been corrected for zero-point energies.

Figure S5. Low-lying isomers of $\operatorname{Th} @ \mathrm{~B}_{39}$ with the relative energies (eV) at the PBE0/RECP/6$311+G^{*}$ levels. Light pink and yellow spheres represent B and Th, respectively. All the energies have been corrected for zero-point energies.

Figure S6. Low-lying isomers of $\mathrm{Cf} @ \mathrm{~B}_{39}$ with the relative energies (eV) at the PBE0/RECP/6$311+G^{*}$ levels. Light pink and yellow spheres represent B and Th, respectively. All the energies have been corrected for zero-point energies.

Figure S7. Bonding pattern of $C_{2}\left[\operatorname{Th} @ \mathrm{~B}_{39}\right]^{3+}$ from AdNDP analysis with the occupation numbers (ONs) indicated at the PBE0/6-311+G*/RECP level of theory.

Figure S8. Bonding pattern of $C_{2} \mathrm{Ac} @ \mathrm{~B}_{39}$ from AdNDP analysis with the ONs indicated at the PBE0/6-311+G*/RECP level of theory.

Figure S9. Bonding pattern of $C_{2} \mathrm{Th} @ \mathrm{~B}_{39}$ from AdNDP analysis with the ONs indicated at the PBE0/6-311+G*/RECP level of theory.

Figure S10. QTAIM analysis of $C_{2}\left[{\left.\mathrm{Th} @ \mathrm{~B}_{39}\right]^{3+} \text { at the PBE0/6-311+G*/RECP level of theory. }}_{\text {P }}\right.$. Red points represent bond critical points, gray lines represent bond paths. Green points represent ring critical points, blue points represent cage critical points.

Figure S11. QTAIM analysis of $C_{2} \mathrm{Ac} @ \mathrm{~B}_{39}$ at the PBE0/6-311+G*/RECP level of theory.

Figure S12. QTAIM analysis of $C_{2} \operatorname{Th} @ \mathrm{~B}_{39}$ at the PBE $0 / 6-311+\mathrm{G}^{*} /$ RECP level of theory.

Figure S13. The frontier molecular orbitals of $A c @ B_{39}$ and $T h @ B_{39}$ at the PBE0/6$311+\mathrm{G}^{*} / \mathrm{RECP}$ level of theory.

Figure S14. The composition of MO for $\left[\mathrm{Ac} @ \mathrm{~B}_{39}\right]^{2+}$ at the PBE0/6-311+G*/RECP level of theory.

HOMO(a)
d 2\%
f 10\%

HOMO-1(b)
p 1\%
d 1\%

HOMO-3(b) f 17\%

Figure S15. The composition of MO for $\left[\mathrm{Th} @ \mathrm{~B}_{39}\right]^{3+}$ at the PBE0/6-311+G*/RECP level of theory.

Figure S16. The composition of MO for $\mathrm{Ac} @ \mathrm{~B}_{39}$ at the PBE0/6-311+G*/RECP level of theory.

Figure S17. The composition of MO for $\operatorname{Th} @ \mathrm{~B}_{39}$ at the PBE0/6-311+G*/RECP level of theory.

Figure S18. The infrared spectra of $C_{2} \mathrm{~B}_{39}{ }^{-}$at the PBE0/6-311+G*/RECP level of theory.

Figure S19. The Raman spectra of $\left[\mathrm{An} @ \mathrm{~B}_{39}\right]^{n+}$ at the PBE0/6-311+G*/RECP level of theory.

Figure S20. The Raman spectra of $C_{2} \mathrm{~B}_{39}{ }^{-}$at the $\mathrm{PBE} 0 / 6-311+\mathrm{G}^{*} / \mathrm{RECP}$ level of theory.

Table S1. Mayer bond orders (MBOs) of the An-B bonds for $\left[\mathrm{An} @ \mathrm{~B}_{39}\right]^{n+}$ calculated by the PBE0 method.

Species	MBOs	Total MBOs
$\mathrm{C}_{2}\left[\mathrm{Ac} @ \mathrm{~B}_{39}\right]^{2+}$	$0.022-0.119$	2.168
$\mathrm{C}_{2} \mathrm{Ac} @ \mathrm{~B}_{39}$	$0.048-0.115$	3.230
$\mathrm{C}_{2}\left[\mathrm{Th} @ \mathrm{~B}_{39}\right]^{3+}$	$0.146-0.304$	7.352
$\mathrm{C}_{2} \mathrm{Th} @ \mathrm{~B}_{39}$	$0.140-0.264$	6.898

Table S2. The EDA results ($\mathrm{kcal} / \mathrm{mol}$) of $\mathrm{Th} @ \mathrm{~B}_{39}$ with Th^{4+} and $\mathrm{B}_{39}{ }^{4-}$ as the two fragments at the PBE/TZP/ZORA level of theory.

Species	$\Delta \mathrm{E}_{\text {Pauli }}$	$\Delta \mathrm{E}_{\text {elstat }}$	$\Delta \mathrm{E}_{\text {steric }}$	$\Delta \mathrm{E}_{\text {orb }}$	$\Delta \mathrm{E}_{\text {int }}$
$\mathrm{Th} @ \mathrm{~B}_{39}$	212.5	-1076.5		-1079.5	

Table S3. In the QTAIM analysis of $C_{2}\left[\operatorname{Ac} @ \mathrm{~B}_{39}\right]^{2+}$, density of electrons ρ, energy density $H(r)$, Laplacian of electron density $\nabla^{2} \rho$, and electron localization function ELF at the PBE0/6$311+G^{*} /$ RECP level.

Name	CP Path	Bond Distances	ρ	$H(r)$	$\nabla^{2} \rho$	ELF
1	2.987	0.02694	-0.00097	0.06686	0.134	
$C_{2}\left[\mathrm{Ac} @ \mathrm{~B}_{39}\right]^{2+}$	2	2.815	0.03388	-0.00387	0.07179	0.179
	4	3.012	0.02672	-0.00123	0.06130	0.147
	5	2.815	0.03388	-0.00387	0.07179	0.179
	6	3.012	0.02672	-0.00123	0.06130	0.147

Table S4. In the QTAIM analysis of $C_{2}\left[\operatorname{Th} @ \mathrm{~B}_{39}\right]^{3+}, \rho, \mathrm{H}(\mathrm{r}), \nabla^{2} \rho$, and ELF at the PBE0/6$311+G * / R E C P$ level.

Name	CP Path	Bond Distances	ρ	$H(r)$	$\nabla^{2} \rho$	ELF
	1	2.971	0.03002	-0.00285	0.05971	0.180
$C_{2}\left[{\left.\mathrm{Th} @ \mathrm{~B}_{39}\right]^{3+}}^{2}\right.$	3	2.776	0.03947	-0.00728	0.06586	0.234
	4	2.983	0.03043	-0.00355	0.05351	0.202
	5	2.983	0.03947	-0.00728	0.06586	0.234
	6	2.971	0.03002	-0.00285	0.05971	0.180

Table S5. In the QTAIM analysis of $C_{2} \operatorname{Ac} @ \mathrm{~B}_{39}, \rho, \mathrm{H}(\mathrm{r}), \nabla^{2} \rho$, and ELF at the PBE0/6$311+G^{*} /$ RECP level.

Name	CP Path	Bond Distances	ρ	$H(\mathrm{r})$	$\nabla^{2} \rho$	ELF
	1	3.009	0.02621	-0.00061	0.06865	0.122
$C_{2} \mathrm{Ac} @ \mathrm{~B}_{39}$	2	2.938	0.03032	-0.00235	0.06599	0.168
	4	2.824	0.03376	-0.00369	0.06956	0.187
	5	2.938	0.03032	-0.00235	0.06599	0.168
	6	3.009	0.026	0.03376	-0.00369	0.06956
		0.00061	0.06865	0.127		

Table S6. In the QTAIM analysis of $C_{2} \operatorname{Th} @ \mathrm{~B}_{39}, \rho, \mathrm{H}(\mathrm{r}), \nabla^{2} \rho$, and ELF at the PBE0/6$311+G * / R E C P$ level.

Name	CP Path	Bond Distances	ρ	$H(r)$	$\nabla^{2} \rho$	ELF
1	2.990	0.02889	-0.00233	0.06539	0.149	
$C_{2} \mathrm{Th} @ \mathrm{~B}_{39}$	2	2.772	0.03944	-0.00721	0.06397	0.242
	4	2.908	0.03409	-0.00492	0.05870	0.216
	5	2.772	0.03944	-0.00721	0.06397	0.242
	6	2.908	0.03409	-0.00492	0.05870	0.216
			0.990			

Table S7. The formation energy ($\mathrm{kcal} / \mathrm{mol}$) of $\left[\mathrm{An} @ \mathrm{~B}_{39}\right]^{n+}$ at the PBE0/6-311+G*/RECP level.

Reactions	Formation Energy
$\mathrm{Ac}^{3+}+\mathrm{B}_{39^{-}}=\left[\mathrm{Ac} @ \mathrm{~B}_{39}\right]^{2+}$	-529.1
$\mathrm{Ac}^{+}+\mathrm{B}_{39^{-}}=\mathrm{Ac} @ \mathrm{~B}_{39}$	-212.5
$\mathrm{Th}^{4+}+\mathrm{B}_{39}=\left[\mathrm{Th} @ \mathrm{~B}_{39}\right]^{3+}$	-1009.2
$\mathrm{Th}^{+}+\mathrm{B}_{39^{-}}=\mathrm{Th} @ \mathrm{~B}_{39}$	-296.8

[^0]: The first two authors contributed equally to this work.
 Email: shiwq@ihep.ac.cn, wangcongzhi@ihep.ac.cn

