Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Preparation of tungstophosphoric acid/cerium-doped UiO-66 Z-scheme photocatalyst: A new candidate for green photo-oxidation of dibenzothiophene and quinoline using molecular oxygen as oxidant

Hanieh Fakhri^{a,b}, Ali Esrafili^{a,b}, Mahdi Farzadkia^{a,b,*}, Rabah Boukherroub^c, Varsha Srivastava^d, Mika Sillanpää^{e,f,g}

^a Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran

^b Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Science, P.O. Box. 14496-14535, Tehran, Iran

^cUniv. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 – IEMN, F-59000 Lille, France

^d Department of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland

^e Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam ^f Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam.

⁸ School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350 QLD, Australia

Characterization

X-ray diffraction (XRD) patterns were recorded on Philips X-pert X-ray diffractometer using Cu K α radiation (wavelength, λ = 1.5418 Å). Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy were conducted on Philips XL-300 instrument. Transmission electron microscopy (Philips cm 30) was used to assay morphological features. Shimadzu-8400S spectrometer was used to acquire Fourier-transform infrared (FT-IR) spectra of the synthesized samples. A gas chromatograph (GC) coupled with a flame ionization detector (GC-FID (HP5890, Agilent)) was used to monitor the concentration of pollutant model. The percentage of Ce was determined by inductively coupled plasma mass spectrometry (ICP-MS) (Varian vista PRO instrument) analysis. The photoluminescence (PL) spectra were recorded using A PELS-55 Luminescence/Fluorescence spectrophotometer.

Fig. S1. Scheme of the photocatalytic system (a) and real picture of the photocatalytic box (b)

Fig. S2. (a) Mapping analysis of PW₁₂/Ce-NUiO-66, (a1) Original image of the region where the mapping was performed, element mapping images of (a2) carbon, (a3) cerium, (a4) oxygen, (a5) tungsten and (a6) zirconium; (b) EDAX spectrum of PW₁₂/Ce-NUiO-66.

Fig. S3. Density functional theory pore size distribution profiles of 30PW₁₂/Ce-NUiO-66.

Fig. S4. The proposed interactions involved for DBT adsorption.

Fig. S5. The proposed interactions involved for Qu adsorption.

Fig. S6. GC chromatograms after 45 min photo-oxidation of (a) DBT and (b) Qu (b); Chemical structures of A: dibenzothiophene; B: dibenzothiophene sulfone; C: quinolone; D: nicotinaldehyde; E: nicotinic acid; F: 7-methyl furo [3,4-b]pyridin- 5(7H)-one

Fig. 57. (a) FTIR spectra and (b) XRD patterns of the fresh and recycled photocatalysts; Photocatalytic efficiency for (c) DBT and (d) Qu after four consecutive cycles.