Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Sol-gel synthesis of dictyophora-shaped hierarchically porous Mn₂SnO₄/C materials as anode for Li-ion batteries

Jintian Wang,^a Junzhang Wang,^a Wei Liu,^a Xingzhong Guo^{a,b,*} and Hui Yang^{a,b}

^a State Key Laboratory of Silicon Materials, School of Materials Science and Engineering of Zhejiang University, Hangzhou P.R. China 310027;

^b Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou P.R. China 311200;

*Corresponding author: Xingzhong Guo, Tel&Fax: 86-571-87953313, Email: msewj01@zju.edu.cn

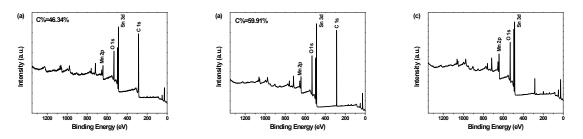


Figure S1. Wide-scan XPS spectra: (a) DS-cMSO/C, (b) BS-cMSO/C and (c) cMO/SO.

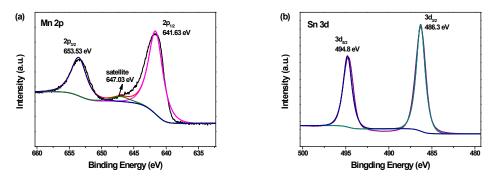
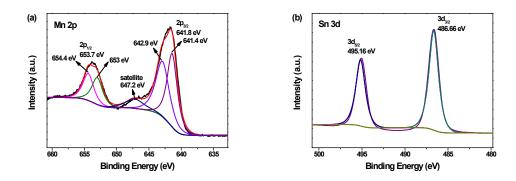



Figure S2. XPS spectra of BS-cMSO/C: (a) Mn 2p, (b) Sn 3d.

Figure S3. XPS spectra of cMO/SO: (a) Mn 2p, (b) Sn 3d.

In order to investigate the reaction during the calcination, the TG-DSC measurement of the Mn-Sn hydroxide xerogel under air atmosphere was carried out, as shown in Figure S4. As the sample was prepared with the polymer, the strong exothermic peak appears between 300 and 400 °C in the DSC curve and the steep reduction of the sample weight is observed around 350 °C in the TG curve, which are attributed to the pyrolysis of the polymers. The weight loss is also observed below 250 °C, which is derived from the removal of Cl-containing species from the sample. The obtained gel networks include a lot of Cl⁻ ions derived from MnCl₂ and SnCl₂. These species presumably coordinate to Mn(\mathbb{I}) and Sn(\mathbb{I}) or play a role of the charge compensation in the networks. The exothermic peak can be observed around 357 °C in the sample. Taking into account that the crystallization of the sample with the polymers took place between 300 and 550 °C, as shown in Figure 2, the exothermic peak around 357 °C can be attributed to the crystallization of Mn₂SnO₄.

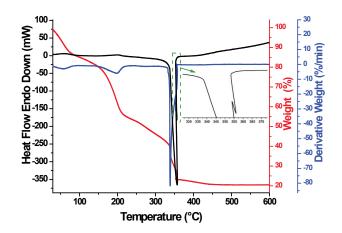
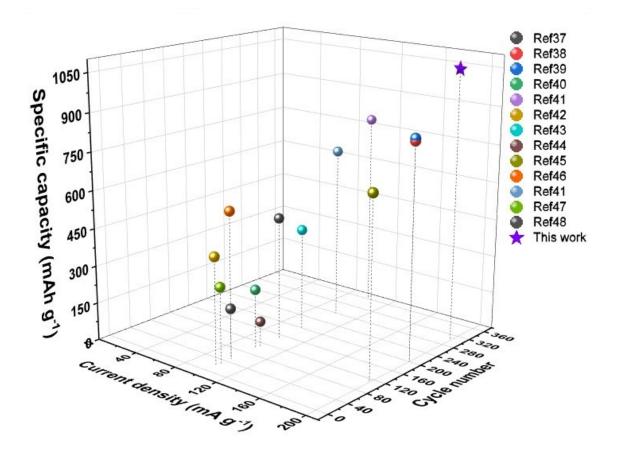
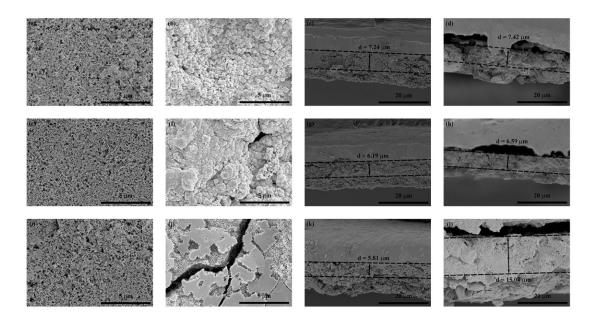




Figure S4. TG-DSC curves of the Mn-Sn hydroxide.

Figure S5. Electrochemical performances of Mn₂SnO₄ materials as LIB anode reported in the open literature.

Figure S6. The SEM images of the (a and b) DS-cMSO/C, (e and f) BS-cMSO/C and (i and j) cMO/SO electrode surface before and after 50 cycles; The cross-sectional SEM images of the (c and d) DS-cMSO/C, (g and h) BS-cMSO/C and (k and l) cMO/SO electrode surface before and after 50 cycles.

Electrodes	Rs (Ω)	Ret (Ω)	Slope $(Z' \sim \omega^{-1/2})$	D $_{(Li+)}$ (cm ² /S)
DS-cMSO/C	4.47	74.66	297.63	1.47×10 ⁻¹⁸
BS-cMSO/C	3.93	218.50	300.28	1.45×10 ⁻¹⁸
cMO/SO	5.94	288.90	383.05	5.94×10 ⁻¹⁹

Table S1. The R_s , R_{ct} and lithium ion diffusion coefficients $D_{(Li+)}$ of DS-cMSO/C, BS-cMSO/C and cMO/SO.