Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Data

for

Surface modification of magnetic nanoparticles via admicellar

polymerization for selective removal of tetracycline from real water

samples

Meshude Akbulut Söylemez^{a,b,*}, Berk Öztürk Kemaloğulları^b

Hacettepe University, Department of Chemistry, Beytepe, Ankara, 06800 Turkey

Institute of Science, Polymer Science and Technology Division Hacettepe University, Beytepe, Ankara, 06800 Turkey

Figure S1. (a) The UV-Visible spectrum of tetracycline in the water at pH 7 and (b) the

calibration curve.

Figure S2. FTIR spectra of magnetic Fe₂O₃ nanoparticles (MNP), UNDA and MNP after modification with UNDA (UNDA@MNP).

Figure S3. Chelating bidentate interaction between the carboxylate group of UNDA and the iron atom.

Figure S4. Chemical structure of STY-DVB-GMA.

The stability of the UNDA@MNP was checked by shacking at 70 °C for 16 h.

Figure S5. FTIR spectra of UNDA@MNP before and after heated at 70 °C.

Figure S6. XPS O1s core level spectra of MNP, UNDA@MNP and MIP@MNP.

Figure S7. Fe2p core spectra of MNP before and after surface modification.

Figure S8. First derivation curve of MNP and UNDA@MNP.

Figure S9. XRD pattern for Fe₂O₃ magnetic nanoparticles (MNP) and MIP modified Fe₂O₃ magnetic nanoparticles (MIP@MNP).

Figure S10. pH effect on the binding capacity of MIP@MNP (5.00 mg modified MIP@MNP in 0.050 mg.mL⁻¹ tetracycline solutions with different pH values. The incubation time was 60 min, n= 3).

15 mg of MIP@MNP was put into solutions of 0.03 M KNO₃ adjusted at different pH values. The suspensions were shaken for 3 h in a shaker at 250 rpm until an equilibrium pH value was reached. The changes in pH values (ΔpH) were determined. The pH_{pzc} was determined by using ΔpH vs initial pH curve (Figure S11) [1].

Figure S11. Experimental immersion technique curve for MIP@MNP.

[1] N. Fiol, I. Villaescusa, *Environ Chem Lett* 2009, **7**, 79–84.

Binding behaviours of MNP were investigated by employing binding isotherms. Bi-Langmuir and Freundlich models were used (Table S1). The obtained curves can be seen in Figure S6.

Table S1 Isotherm models and related parameters used in this work.

Isotherm	Equation	Parameters
Langmuir	$B = \frac{NKF}{1 + KF}$	B, amount of bound analyte on imprinted network
Bi-Langmuir	$\mathbf{B} = \frac{\mathbf{N}_1 \mathbf{K}_1 \mathbf{F}_1}{1 + K_1 F_1} + \frac{\mathbf{N}_2 \mathbf{K}_2 \mathbf{F}_2}{1 + \mathbf{K}_2 \mathbf{F}_2}$	F, free concentration of analyte in solution
Scatchard Equation	$\frac{B}{F} = KN - KB$	N, number of binding sites K, binding constant
Freundlich	$B = aF^m$	a, adsorption constant m, heterogeneity index

Figure S12. (a) The binding isotherms (b) Scatchard analysis plot of MIP@MNP and (c) NIP@MNP and (d) Freundlich plot of MIP@MNP (5.00 mg modified MNP, incubation time 35 min, pH: 7, n: 3).

Table S2 Lagergren's 1st order and pseudo 2nd order rate equations and related parameters.

Pseudo-First Order Kinetic Model	$ln(\boldsymbol{q}_e-\boldsymbol{q}_t)=ln(\boldsymbol{q}_e)-k_1t$	q_e , amount of the adsorbed analyte at equilibrium q_t , amount of the adsorbed analyte at
Pseudo-Second Order Kinetic Model	$\frac{t}{q_t} = \left(\frac{1}{k_2 q_e^2}\right) + \left(\frac{1}{q_e}\right)t$	time t t, time k ₁ , pseudo-first order rate constant k ₂ , pseudo-second order rate constant

Figure S13. a) Change in adsorption of tetracycline with time, b) pseudo-1st-order and c) pseudo-2nd-order for MIP@MNP, respectively (amount of MIP@MNP: 5.00 mg, tetracycline concentration: 0.050 mg.mL⁻¹, pH: 7, n: 3).

Table S3 The rate constant, k and value of binding capacity at equilibrium, q_e for tetracyclinebinding onto MIP@MNP.

First-Order	k_1 (min ⁻¹)	0.0478	
	$q_{e} (mg g^{-1})$	24.0	
	R ²	0.9067	
Pseudo Second-	k ₂ (g mg ⁻¹ min ⁻¹)	0.0024	
Order	$q_{e} (mg g^{-1})$	37.6	
	R ²	0.9909	

Figure S14. (a) Adsorption isotherms of tetracycline adsorption on MIP@MNP and NIP@MNP at different temperatures and (b) linear fitting curve of equilibrium constant (K_d) versus temperature (ln K_d versus 1/T) at 0.05 mg/mL of tetracycline concentration (pH: 7, incubation time: 35 min, n: 3).

Temperature (K)	K (L.g ⁻¹)	ln K	$\Delta G^{0} (kJ.mol^{-1})$	$\Delta H^0 (kJ.mol^{-1})$	$\Delta S^0 (J.mol^{-1}K^{-1})$
298	168	5.124	-12.70		
303	185	5.220	-13.15	17.16	100.2
308	215	5.371	-13.75	-	
313	231	5.442	-14.16	-	

Table S4 Thermodynamic parameters for adsorption of tetracycline on MIP@MNP.

Figure S15. Chemical structures of tetracycline (TC) and oxytetracycline hydrochloride (OTC), doxycycline hyclate (DO), chlorotetracycline (CTC).

Figure S16. Calibration curves of tetracycline (TC) and oxytetracycline hydrochloride (OTC), doxycycline hyclate (DO), chlorotetracycline (CTC) obtained by HPLC.

Table S5 Equations and related parameters for dissociation constant (K_d), selectivity coefficient (k) and relative selectivity coefficient (k').

	Equation	Parameters	
Dissociation Constant (K _d)	$\mathbf{K}_d = \frac{(\mathbf{C}_0 - \mathbf{C}_f)}{\mathbf{C}_f} x \frac{V}{m}$	C_0 Initial concentration of dye C_f Final concentration of dye	
Selectivity Coefficient (k)	$\mathbf{k} = \frac{\mathbf{K}_{dTetracycline}}{\mathbf{K}_{dAntibiotic}}$	V volume of the solution	
Relative Selectivity Coefficient (k ')	$\mathbf{k'} = \frac{\mathbf{k_{MIM}}}{\mathbf{k_{NIM}}}$	M mass of the dry polymer k _{MIM} Selectivity coefficient of imprinted membrane k _{NIM} Selectivity coefficient of non-imprinted membrane	

Table S6 Dissociation constant (K_d), selectivity coefficient (k) and relative selectivity coefficient (k') of MIM.

	KD, MIP	KD, NIP	kmip	kութ	k'
TC	14.9	4.4			
OTC	10.6	6.8	1.41	0.64	2.20
DC	11.2	7.4	1.33	0.59	2.24
CTC	6.05	4.9	2.45	0.89	2.76