Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic supplementary information for

Unravelling the cooperative role of lattice strain on MnO₂/TiO₂ and MnO₂/ZnO catalysts for fast decomposition of hydrogen peroxide

D. Santhanaraj^a*, A. Selvamani^b, K. Rajakumar^c, N. Ricky Joseph^a, S. Giridhar^a, T. Adinaveen^a, P. Leema Sophie^a, V. Ramkumar^d

- [a] Prof. D. Santhanaraj, Prof. T. Adinaveen and Prof. P. Leema Sophie Department of Chemistry, Loyola College, Chennai, Tamilnadu 600 034, India.
 E-mail: <u>santhanaraj@loyolacollege.edu</u>
- [a] Mr. N. Ricky Joseph and Mr. S. Giridhar Department of Chemistry, Loyola College, Chennai, Tamilnadu 600 034, India
- [a] Mr. S. Giridhar Department of Chemistry, Loyola College, Chennai, Tamilnadu 600 034, India
- [b] Catalytic Reforming Area, Light Stock Processing Division, CSIR- Indian Institute of Petroleum Dehradun-248 005, Uttarakhand, India.
- [c] Nanotechnology Research & Education Centre South Ural State University, Chelyabinsk - 454080, Russia
- [d] Dr. V. Ramkumar Department of Polymer Science and Technology, (CSIR) – Central Research Laboratory, Adyar, Chennai, Tamilnadu 600 020, India.

Figure S1 XPS spectra of MnO₂ loaded on TiO₂ and ZnO catalysts

The XPS spectra showing the O 1s signal of MnO2 loaded on ZnO catalyst at three different binding energy values such as 529.3, 530.4, and 532.4 eV, respectively. The first peak assigned

to the surface lattice oxygen (O_{latt}), and the second peak can be attributed to the surface adsorbed oxygen (O_{ads}), and the final peak was developed mainly due to the adsorbed molecular water species (O_{H2O}).¹⁻³ However, in the case of the TiO₂ catalyst, the surface adsorbed oxygen contribution was significantly less due to fewer interaction sites of TiO₂ lattice. Further, the oxidation states of Ti⁴⁺ and Zn²⁺ were identified from their respective XPS peak positions, as shown in Figure S1.

Figure S2 H₂-TPR results of synthesised catalysts

Catalytic activity

	1 4	• • • •	1 4 1 4	
I able SIC manfitative relationship	n hetween	lattice strain	and catalytic	activity
		iautice su am	and catalytic	activity
			•	•

Catalysts	Strain ε	Stress σ	TOF (sec ⁻¹)
	(10)	(IVIPa)	
10%MnO ₂ /TiO ₂	0.417	52.96	187.2
20%MnO ₂ /TiO ₂	0.486	65.86	193.6
30%MnO ₂ /TiO ₂	0.398	49.65	62.4
40%MnO ₂ /TiO ₂	0.395	49.89	56.8
50%MnO ₂ /TiO ₂	0.397	49.87	56.4

References

- 1. K. S. Kim, Phys. Rev. B: Solid State 1975, 11, 2177-2185.
- 2. T. A. Patterson, J. C. Carver, D. E. Leyden, D. M. Hercules, J. Phys. Chem. 1976, 80, 1700–1708.
- 3. Z. Li, H. Wang, X. Wu, Q. Ye, X. Xu, B. Li, F. Wang, *Appl. Surf. Sci.* 2017, **403**, 335–341.