Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Promoting Hydrogen Evolution of g-C₃N₄ Based Photocatalyst by

Indium and Phosphorus Co-doping

Xiaohang Yang,^a Chi Cao,^a Zilong Guo,^b Xiaoyu Zhang,^a Yaxin Wang^b and Wensheng Yang^{*,a,b}

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun

130012, China

^b Institute of Molecular Plus, Tianjin University, Tianjin 300072, China

E-mail: wsyang@jlu.edu.cn

Contents

1. SEM images of g-C ₃ N ₄ , In-g-C ₃ N ₄ , P-g-C ₃ N ₄ and In,P-g-C ₃ N ₄ photocatalysts.	S2
2. TEM images of g-C ₃ N ₄ , In-g-C ₃ N ₄ , P-g-C ₃ N ₄ and In,P-g-C ₃ N ₄ photocatalysts.	S 3
3. Tapping-mode AFM image and height curve of In,P-g-C ₃ N ₄ photocatalyst.	S 4
4. Contents of C and N elements and the corresponding molar ratio of $g-C_3N_4$, $In-g-C_3N_4$, P-g and $In,P-g-C_3N_4$ photocatalysts.	ζ-C₃N₄ S5
5. Comparison in quantum efficiency of different photocatalysts.	S6
6. TEM image and XRD pattern of In,P-g-C $_3N_4$ photocatalyst after cyclic H $_2$ generation reaction.	S7
7. High resolution XPS spectra of In,P-g-C ₃ N ₄ photocatalyst after cyclic H ₂ generation reaction.	S 8
8. Nitrogen adsorption-desorption isotherms and size distribution curves of $g-C_3N_4$, $In-g-C_3N_4$ C_3N_4 and $In,P-g-C_3N_4$ photocatalysts.	, P-g-
9. Surface areas, pore volumes and average pore sizes of g-C ₃ N ₄ , In-g-C ₃ N ₄ , P-g-C ₃ N ₄ and In,P-g	ζ-C₃N₄
photocatalysts.	S10
10. Photoluminescence spectra of g-C ₃ N ₄ , In-g-C ₃ N ₄ , P-g-C ₃ N ₄ and In,P-g-C ₃ N ₄ photocatalysts.	S11
11. Transient emission decays of g-C $_3N_4$, In-g-C $_3N_4$, P-g-C $_3N_4$ and In,P-g-C $_3N_4$ photocata S12	ılysts.
12.Mott-Schottky plots of g-C ₃ N ₄ , In-g-C ₃ N ₄ , P-g-C ₃ N ₄ and In,P-g-C ₃ N ₄ photocatalysts.	S13
13. The calculated band structure of $g-C_3N_4$, $In-g-C_3N_4$, $P-g-C_3N_4$ and $In, P-g-C_3N_4$ photocatalysts.	S14

Fig. S1 SEM images of (a) $g-C_3N_4$, (b) $In-g-C_3N_4$, (c) $P-g-C_3N_4$ and (d) $In,P-g-C_3N_4$ photocatalysts. The $g-C_3N_4$ and $In-g-C_3N_4$ photocatalysts showed the similar sheetlike structure, which was absent in the images of the $P-g-C_3N_4$ and $In,P-g-C_3N_4$ photocatalysts, meaning the doping of indium have little effect on the layered structure and the doping of phosphorus destroy the layered structure to some extent.

Fig. S2 TEM images of (a) $g-C_3N_4$, (b) $In-g-C_3N_4$, (c) $P-g-C_3N_4$ and (c) $In,P-g-C_3N_4$ photocatalysts. The typical two-dimensional sheet-like structure of $g-C_3N_4$ was observable for all the photocatalysts, meaning remaining of the layered structure upon the indium and/or phosphorus doping, consistent with the XRD results (see Fig. 2 in the text).

Fig. S3 (a) Tapping-mode AFM image of the $In,P-g-C_3N_4$ photocatalyst deposited on silicon wafer substrate and (b) Variation in height of the photocatalyst along the labeled lines. Lateral dimension of the photocatalyst was measured to be ca. 280 nm and its thickness was determined to be ca. 28 nm.

Photocatalyst	atalyst C		C/N	
	(wt.%)	(wt.%)	(mol/mol)	
g-C ₃ N ₄	33.83	54.96	0.7181	
P-g-C ₃ N ₄	22.87	41.31	0.6458	
In-g-C ₃ N ₄	32.23	52.79	0.7123	
In,P-g-C ₃ N ₄	28.46	51.67	0.6426	

Table S1 Contents of C and N elements and the corresponding molar ratio of C and Nin the $g-C_3N_4$, $P-g-C_3N_4$, $In-g-C_3N_4$ and $In, P-g-C_3N_4$ photocatalysts.

Table S2 Comparison in quantum efficiency (QE) of different $g-C_3N_4$ -based photocatalysts and the standard photocatalysts (Degussa P25 and CdS) at the monochromatic irradiation wavelength of 420 nm.

Catalyst	Doped element	Quantum efficiency (%)	Ref.
In-g-C ₃ N ₄	In ³⁺	6.79	Ref. 18 in the text
$Zn-g-C_3N_4$	Zn ²⁺	3.20	Ref. 34 in the text
I-g-C ₃ N ₄	I	2.40	Ref. 35 in the text
$P-g-C_3N_4$	Р	3.56	Ref. 36 in the text
$Na,P-g-C_3N_4$	Na ⁺ ,P	6.80	Ref. 17 in the text
In,P-g-C ₃ N ₄	In,P	8.02	This work
P25			Ref. 32 in the text
CdS		0.38	Ref. 33 in the text

Fig. S4 TEM image of the $In,P-g-C_3N_4$ photocatalyst after four cycles of the H_2 generation reaction. No obvious changes in morphology of the $In,P-g-C_3N_4$ photocatalyst could be observed after the reaction (see Fig. S2 for comparison).

Fig. S5 Comparison in XRD patterns of the $In,P-g-C_3N_4$ photocatalyst before (black) and after (red) four cycles of the H₂ generation reaction. There were almost no differences in position and intensity of XRD peaks for the photocatalyst before and after the reaction.

Fig. S6 Comparison in high resolution (a) C 1s, (b) N 1s, (c) P 2p, and (d) In 3d XPS spectra of the $In,P-g-C_3N_4$ photocatalyst before (black) and after (red) four cycles of the H₂ generation reaction. There were almost no changes in XPS spectra of the photocatalyst before and after the reaction.

Fig. S7 Nitrogen adsorption-desorption isotherms of the (a) $g-C_3N_4$, (b) $P-g-C_3N_4$, (c) $In-g-C_3N_4$ and (d) $In,P-g-C_3N_4$ photocatalysts (see Table S3 for the derived surface areas and pore volumes).

Fig. S8 Size distribution curves of the $g-C_3N_4$, $P-g-C_3N_4$, $In-g-C_3N_4$ and $In,P-g-C_3N_4$ photocatalysts (see Table S3 for the derived average pore sizes).

Table S3 Surface areas, pore volumes and average pore sizes of the $g-C_3N_4$, $P-g-C_3$	₃ N ₄ ,
In-g-C ₃ N ₄ and In,P-g-C ₃ N ₄ photocatalysts.	

Sample	Surface area	Pore volume	Average pore size
	(m ² ·g ⁻¹)	(cm ³ ·g ⁻¹)	(nm)
g-C ₃ N ₄	24.91	0.07	1.65
P-g-C ₃ N ₄	37.05	0.14	2.46
In-g-C ₃ N ₄	34.81	0.09	2.27
In,P-g-C ₃ N ₄	73.57	0.21	2.77

Fig. S9 Photoluminescence spectra of the g-C₃N₄, P-g-C₃N₄, In-g-C₃N₄ and In,P-g-C₃N₄ photocatalysts. Intensity of the emission peak of g-C₃N₄ at 452 nm decreased upon the doping of indium or phosphorus, indicating the indium or phosphorus doping is effective to suppress the recombination of photogenerated electron-hole pairs. The emission was weakened greatly in the In,P-g-C₃N₄, implying the synergistic effect of In and P doping on improving the separation efficiency of photogenerated charge carriers.

Fig. S10 Time-resolved photoluminescence decay spectra of the $g-C_3N_4$, $P-g-C_3N_4$, Ing-C₃N₄ and In,P-g-C₃N₄ photocatalysts. The triexponential decay function was utilized to fit the curves (see Table S4 for the fitting results).

Table S4. Room temperature transient fluorescence decay of g-C ₃ N ₄ , P-g-C ₃ N ₄ , In-	g-
C ₃ N ₄ and In,P-g-C ₃ N ₄ catalysts.	

Samples	Parameters	Lifetime	Relative	Average
		(ns)	percentage (%)	lifetime
				(ns)
g-C ₃ N ₄	$ au_1$	9.11	38.25	3.34
	$ au_2$	63.48	10.92	
	$ au_3$	1.98	50.83	
$P-g-C_3N_4$	$ au_1$	9.08	38.01	3.14
	$ au_2$	62.02	11.98	
	$ au_3$	1.82	50.00	
In-g-C ₃ N ₄	$ au_1$	8.11	38.90	2.90
	$ au_2$	57.02	12.16	
	$ au_3$	1.66	48.94	
$In,P-g-C_3N_4$	$ au_1$	6.05	33.27	1.95
	$ au_2$	49.27	10.30	
	$ au_3$	1.24	56.43	

Fig. S11 Mott-Schottky plots of the (a) $g-C_3N_4$, (b) P- $g-C_3N_4$, (c) $In-g-C_3N_4$ and (d) $In,P-g-C_3N_4$ photocatalysts. According to the X intercepts at the tangents of plots, flat band potentials (E_{fb}) of the $g-C_3N_4$, $P-g-C_3N_4$, $In-g-C_3N_4$ and $In,P-g-C_3N_4$ photocatalysts were derived to be -1.50, -1.40, -1.48 and -1.39 V (vs. Ag/AgCl), and -0.91, -0.81, -0.89 and -0.80 V (vs. NHE, pH=0), respectively (see Ref. 32 in the text). By assuming the conduction band minimum (CBM) of the n-type semiconductor be 0.1 V more negative than the E_{fb} values (see Ref. 32 in the text), the corresponding CBM potentials of the $g-C_3N_4$, $P-g-C_3N_4$, $In-g-C_3N_4$ and $In,P-g-C_3N_4$ photocatalysts were thus derived to be -1.01, -0.91, -0.99 and -0.90 V (vs. NHE, pH=0), respectively.

Fig. S12 The calculated band structures of the (a) $g-C_3N_4$, (b) $In-g-C_3N_4$ and (c) P-g-C₃N₄ photocatalysts. The corresponding total density of states (TDOS) and projected density of states (pDOS) contributed by orbitals of the constituent atoms were shown in Fig.7 in the text.