Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information

Highly Efficient Solar-driven Photocatalytic Hydrogen Evolution by Ternary 3D ZnIn₂S₄-MoS₂ Microsphere/1D TiO₂ Nanobelt Heterostructure

Hanghang Zhou,^a Lan Wang,^{*a} Hang Shi,^a Huan Zhang,^a Yue Wang,^a Shiqi Bai,^a Yifan Yang,^a Yujuan Li,^a Tingting Zhang^a and Hongzhong Zhang^{*a}

^aHenan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China

Tel: 86-10-63556510; E-mail: lwang2017@zzuli.edu.cn and zhz@zzuli.edu.cn

Figure S1 EDS spectrum of 250%-ZIS/25%-MoS₂/TiO₂ composite

Figure S2 (a-e) Nitrogen adsorption-desorption isotherms and

(f) corresponding the Barrett-Joyner-Halenda (BJH) pore size distribution curves of MoS₂, TiO₂, ZnIn₂S₄, 10%-MoS₂/ZIS and 250%-ZIS/25%-MoS₂/TiO₂ samples

Figure S3 SEM images of 250%-ZIS/25%-MoS $_2/TiO_2$ after four cycles

Figure S4 XPS of 250%-ZIS/25%-MoS₂/TiO₂ after four cycles

Figure S5 Excitation spectrum of $ZnIn_2S_4$, 250%-ZIS/TiO₂, 10%-MoS₂/ZIS and 250%-

$ZIS/25\%\text{-}MoS_2/TiO_2$

Figure S6 Time courses of H₂ evolution with different TEOA contents

Figure S7 The rate of H₂ evolution of the 250%-ZIS/25%-MoS₂/TiO₂ under UV-light (λ =380 nm), sunlight (AM 1.5) and visible light (λ =380 nm).

Table S1 The atomic ratios (Zn:In:Mo:Ti) of as-synthesized 250%-ZIS/25%- MoS_2/TiO_2 measured by ICP-AES.

Sample	Element
Precursor (Zn:In:Mo:Ti)	Zn:In:Mo:Ti (ICP)
3.8:7.6:1:8	3:5.8:1:7.5

 Table S2. BET specific surface area, pore size, pore volume of the synthesized composite.

Samples	S _{BET}	Pore Size	Pore volume
	(m ² /g)	(nm)	(cm ³ /g)
MoS_2	3.166	10.754	0.008
TiO ₂	43.711	19.187	0.242
ZnIn ₂ S ₄	34.924	8.599	0.075
10%-MoS ₂ /ZIS	59.587	10.046	0.149
250%-ZIS/25%-MoS ₂ /TiO ₂	50.372	12.683	0.142

Table S3. The apparent quantum efficiency (AQE) of MoS₂, TiO₂, ZnIn₂S₄, 250%-ZIS/TiO₂, 25%-MoS₂/TiO₂, 10%-MoS₂/ZIS and 250%-ZIS/25%-MoS₂/TiO₂. The apparent quantum efficiency (AQE) was analyzed with a wavelength of 380 nm under the 300 W Xe lamp (PLS-SXE300) irradiation. The other experimental conditions were similar to the photocatalytic hydrogen evolution measurement as described before. The light intensity was obtained with an optical power meter (PL-MW2000, Beijing Perfectlight Co. Ltd., China). For example, if 380 nm is used, the average light intensity is 19.1 mW cm⁻². The irradiation area is 19.625 cm² (2.5 cm radius). The number of incident photons (*N*) is 1.55×10^{22} calculated by equation (1). The amount of H₂ molecules generated for 6 h were about 5064.2 µmol. The AQE was then calculated in equation (2).

$$N = \frac{E\lambda}{hc} = \frac{19.1 \times 19.625 \times 10^{-3} \times 6 \times 3600 \times 380 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}} = 1.55 \times 10^{22}$$
(1)

$$AQE = \frac{\text{the number of reacted electrons}}{\text{the number of incident photons}} \times 100\%$$
$$= \frac{2 \times \text{the number of evolved } H_2 \text{ molecules}}{N} \times 100\%$$
$$= \frac{2 \times 6.02 \times 10^{23} \times 5064.2 \times 10^{-6}}{1.55 \times 10^{22}} \times 100\% = 39.33\%$$

For example, if 420 nm is used, the average light intensity is 19.1 mW cm⁻². The irradiation area is 19.625 cm² (2.5 cm radius). The number of incident photons (*N*) is 1.71×10^{22} calculated by equation (1). The amount of H₂ molecules generated for 6 h

were about 4262.8 $\mu mol.$ The AQE was then calculated in equation (2).

$$N = \frac{E\lambda}{hc} = \frac{19.1 \times 19.625 \times 10^{-3} \times 6 \times 3600 \times 420 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}} = 1.71 \times 10^{22}$$
(1)

$$AQE = \frac{the number of reacted electrons}{the number of incident photons} \times 100\%$$
$$= \frac{2 \times the number of evolved H_2 molecules}{N} \times 100\% \qquad (2)$$
$$= \frac{2 \times 6.02 \times 10^{23} \times 4262.8 \times 10^{-6}}{1.71 \times 10^{22}} \times 100\% = 30.0\%$$

Samples	AQE (%)
MoS_2	0.00
TiO ₂	0.02
$ZnIn_2S_4$	0.93
250%-ZIS/TiO ₂	1.27
25%-MoS ₂ /TiO ₂	0.11
10%-MoS ₂ /ZIS	19.99
250%-ZIS/25%-MoS ₂ /TiO ₂	39.33
250%-ZIS/25%-MoS ₂ /TiO ₂ (420 nm)	30.0

Table S4. AQE over some $ZnIn_2S_4$ -based photocatalysts in reported work in contrast with this work.

Sample	Light	Sacrificial	AQE	Reference
	source	agents		
250%-ZIS/25%-MoS ₂ /TiO ₂	simulated	10 vol% TEOA	39.33%	
	sun-light			In this paper

	$\lambda > 420 \text{ nm}$	10 vol% TEOA	30%	
3wt% MoS ₂ /CQDs/ZnIn ₂ S ₄	$\lambda > 420 \text{ nm}$	0.1 M Na ₂ S/Na ₂ SO ₃	25.6%	1
6wt%MoS ₂ /Cu-ZnIn ₂ S ₄	$\lambda > 420 \text{ nm}$	0.1M ascorbic acid	13.6%	2
1wt%MoS ₂ /ZnIn ₂ S ₄	$\lambda > 420 \text{ nm}$	10vol% lactic acid	3.08%	3
RGO/ZnIn ₂ S ₄	$\lambda > 420 \text{ nm}$	10vol% TEOA	4.4%	4
ZnIn ₂ S ₄ /g-C ₃ N ₄	$\lambda > 420 \text{ nm}$	20vol% TEOA	7.05%	5
ZnIn ₂ S ₄ /pCN	$\lambda > 400 \text{ nm}$	20vol% TEOA	0.92%	6
ZnIn ₂ S ₄ @NH ₂ -MIL-125(Ti)	$\lambda > 420 \text{ nm}$	0.25 M Na ₂ SO ₃ &0.35 M Na ₂ S	4.3%	7
Ni ₂ P/ZnIn ₂ S ₄	$\lambda > 400 \text{ nm}$	10vol% lactic acid	7.7%	8
CuInS ₂ /ZnIn ₂ S ₄	$\lambda > 420 \text{ nm}$	Na ₂ S&Na ₂ SO ₃	12.4%	9
$ZnIn_2S_4/Ni_{12}P_5$	$\lambda > 420 \text{ nm}$	0.25 M Na ₂ SO ₃ &0.35 M Na ₂ S	20.5%	10
ZnIn ₂ S ₄ /MoSe ₂	$\lambda > 420 \text{ nm}$	0.25 M Na ₂ SO ₃	21.39%	11
		&0.35 M Na_2S		

Sample	Hydrogen	The hydrogen	Condition:	Reference
	production	production rate	sacrificial agents.	
	rate (μ mol	ratio	earth agene,	
	g ⁻¹ h ⁻¹)	$(ZnIn_2S_4/X vs$	cocatalyst	
		ZnIn ₂ S4)	light	
250%-ZIS/25%-MoS ₂ /TiO ₂	8440.28	44.4	10vol% TEOA	In this paper
$ZnIn_2S_4$	190.1		simulated	
			sun-light	
3wt% MoS ₂ /CQDs/ZnIn ₂ S ₄	3000	17.8	0.1 M Na ₂ S/Na ₂ SO ₃	1
$ZnIn_2S_4$	168		$\lambda > 420 \text{ nm}$	
1wt%MoS ₂ /ZnIn ₂ S ₄	2512.5	8.7	8% lactic acid	3
$ZnIn_2S_4$	287.5		$\lambda > 420 \text{ nm}$	
MoS ₂ -QDs/ZnIn ₂ S ₄	7156	9	ΤΕΟΑ	12
$ZnIn_2S_4$	794.7		$\lambda > 420 \text{ nm}$	
ZnIn ₂ S ₄ /MoS ₂ -RGO	425.1	34.6	20vol% lactic acid	13
$ZnIn_2S_4$	12.3		$\lambda > 420 \text{ nm}$	
2wt% 1T-Li _x MoS ₂ /ZnIn ₂ S ₄	6648	2.4	0.25 M Na ₂ SO ₃ &	14
			0.35 M Na ₂ S	
ZnIn ₂ S ₄	2270		$\lambda > 420 \text{ nm}$	

Table S5. Photocatalytic hydrogen evolution over the reported $ZnIn_2S_4/X$ composite

MoS ₂ /ZnIn ₂ S ₄	8898	16	10vol% TEOA	15
$ZnIn_2S_4$	556		$\lambda > 400 \text{ nm}$	
CdS/QDs/ZnIn ₂ S ₄	2107.5	62	20vol% lactic acid	16
ZnIn ₂ S ₄	33.9		$\lambda > 420 \text{ nm}$	
5%-MoS ₂ /ZnIn ₂ S ₄	3891.6	381	0.25 M Na ₂ SO ₃	17
ZnIn ₂ S ₄	10.2		&0.35 M Na ₂ S	
			$\lambda > 420 \text{ nm}$	
RGO/ZnIn ₂ S ₄	2640.8	4.2	10vol% TEOA	4
ZnIn ₂ S ₄	625.6		0.3 wt% Pt	
			$\lambda > 420 \text{ nm}$	
$ZnIn_2S_4/g-C_3N_4$	2780	15.4	20vol% TEOA	5
ZnIn ₂ S ₄	180.6		$\lambda > 420 \text{ nm}$	
ZnIn ₂ S ₄ /pCN	8601	2.3	20vol% TEOA	6
ZnIn ₂ S ₄	3739		$\lambda > 400 \text{ nm}$	
ZnIn ₂ S ₄ @NH ₂ -MIL-	2204.2	6.5	0.25 M Na ₂ SO ₃	7
125(Ti)			&0.35 M Na ₂ S	
$ZnIn_2S_4$	339		$\lambda > 420 \text{ nm}$	
$ZnIn_2S_4/Ni_{12}P_5$	2263	2	0.25 M Na ₂ SO ₃	10
			&0.35 M Na ₂ S	
ZnIn ₂ S ₄	1115		$\lambda > 420 \text{ nm}$	
		13		

ZnIn ₂ S ₄ /MoSe ₂	2228	2.2	0.25 M Na ₂ SO ₃	11
			&0.35 M Na ₂ S	
$ZnIn_2S_4$	1023		$\lambda > 420 \text{ nm}$	
NiS/ZnIn ₂ S ₄	3333	2.9	50vol% lactic acid	18
$ZnIn_2S_4$	1133		$\lambda > 420 \text{ nm}$	
$AgIn_5S_8/ZnIn_2S_4$	949.9	3.6	0.25 M Na ₂ S &	19
			0.25 M Na ₂ SO ₃	
$ZnIn_2S_4$	263.8		2 wt% Pt	
			$\lambda > 420 \text{ nm}$	
$3\%WS_2/ZnIn_2S_4$	199.1	6	0.25 M Na ₂ SO ₃ &	20
			0.35 M Na ₂ S	
$ZnIn_2S_4$	33.2		$\lambda \ge 420 \text{ nm}$	

REFERENCE

- 1 B. Wang, Z. Deng, X. Fu and Z. Li, J. Mater. Chem. A, 2018, 6, 19735-19742.
- 2 Y. J. Yuan, D. Chen, J. Zhong, L. X. Yang, J. Wang, M. J. Liu, W. G. Tu, Z. T. Yu and Z. G. Zou, J. Mater. Chem. A, 2017, 5, 15771-15779.
- 3 C. Liu, B. Chai, C. Wang, J. Yan and Z. Ren, Internat. J. Hydrogen Energ., 2018, 43, 6977-6986.
- 4 Y. Xia, Q. Li, K. Lv, D. Tang and M. Li, Appl. Catal., B, 2017, 206, 344-352.
- 5 B. Lin, H. Li, H. An, W. Hao, J. Wei, Y. Dai, C. Ma and G. Yang, Appl. Catal., B, 2018, 220,

542-552.

- 6 H. Yang, R. Cao, P. Sun, J. Yin, S. Zhang and X. Xu, Appl. Catal., B, 2019, 256, 117862.
- 7 H. Liu, J. Zhang and D. Ao, Appl. Catal., B, 2018, 221, 433-442.
- 8 X. I. Li, X. j. Wang, J. y. Zhu, Y. p. Li, J. Zhao and F. t. Li, Chem. Eng.g J., 2018, 353, 15-24.
- 9 Z. Guan, J. Pan, Q. Li, G. Li and J. Yang, ACS Sustain. Chem. Eng., 2019, 7, 7736-7742.
- 10 D. Zeng, Z. Lu, X. Gao, B. Wu and W. J. Ong, Catal. Sci. Technol., 2019, 9, 4010-4016.
- 11 D. Zeng, L. Xiao, W.-J. Ong, P. Wu, H. Zheng, Y. Chen and D. L. Peng, *ChemSusChem*, 2017, 10, 4624-4631.
- 12 Y. Liu, C. F. Li, X. Y. Li, W. B. Yu, W. D. Dong, H. Zhao, Z. Y. Hu, Z. Deng, C. Wang, S. J. Wu, H. Chen, J. Liu, Z. Wang, L. H. Chen, Y. Li and B. L. Su, *J.Colloid Interf. Sci.*, 2019, 551, 111-118.
- 13 Z. Guan, P. Wang, Q. Li, G. Li and J. Yang, Dalton T., 2018, 47, 6800-6807.
- 14 J. Liu, W. Fang, Z. Wei, Z. Qin, Z. Jiang and W. Shangguan, *Catal. Sci. Technol.*, 2018, 8, 1375-1382.
- 15 W. Li, Z. Lin and G. Yang, Nanoscale, 2017, 9, 18290-18298.
- 16 W. Chen, R. Q. Yan, J. Q. Zhu, G. B. Huang and Z. Chen, Appl. Surf. Sci., 2020, 504, 144406.
- 17 Z. Zhang, L. Huang, J. Zhang, F. Wang, Y. Xie, X. Shang, Y. Gu, H. Zhao and X. Wang, *Appl. Catal.*, *B*, 2018, **233**, 112-119.
- 18 A. Yan, X. Shi, F. Huang, M. Fujitsuka and T. Majima, Appl. Catal., B, 2019, 250, 163-170.
- 19 Z. Guan, Z. Xu, Q. Li, P. Wang, G. Li and J. Yang, Appl. Catal., B, 2018, 227, 512-518.
- 20 J. Zhou, D. Chen, L. Bai, L. Qin, X. Sun and Y. Huang, *Internat. J. Hydrogen Energ.*, 2018, **43**, 18261-18269.