Co₂P Nanoparticle/Multi-Doped Porous Carbon nanosheet for Oxygen

Evolution Reaction

Xinxin Sang,*^a Hengbo Wu,^a Nan Zang,^a Huilian Che,^a Dongyin Liu,^a Xiangdao Nie,^a Dawei Wang,^a Xiaoxue Ma,^b Wei Jin^{*a}

^a The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,

Jiangnan University, Wuxi 214122, PR China.

^b Institute of Rare and Scattered Elements Chemistry, College of Chemistry, Liaoning

University, Shenyang, Liaoning 110036, China.

Experimental

Reagents and materials

Cobaltous nitrate hexahydrate (Co(NO₃)₂·6H₂O, 99% pure), potassium hydroxide (KOH, 90%) and anhydrous ethanol were purchased from Sinopharm Chemical Reagent Co., Ltd used without further purification. Analytical-grade iridium(IV) oxide (IrO₂) and 5% Nafion were bought from Macklin and Alfa Aesar, respectively. 2-methylimidazole (Hmim, 99% pure), branched polyethylenimine (PEI, Mw = 10,000 g/mol), and phytic Acid (PA, 50% in water) were supplied by Sigma-Aldrich.

Sample preparation

Firstly, leaf-like ZIF-L was synthesized with a Hmim to cobalt ions molar ratio of 4 at room temperature as previous reported.¹ Typically, 1 mmol of Co(NO₃)₂·6H₂O and 4 mmol of Hmim were dissolved in 5 mL deionized water respectively, and then the aqueous solution of Co(NO₃)₂ was mixed with the Hmim solution under stirring. After stirring for 2 hours, 0.5 mL PEI with a concentration of 0.05 g/mL was added. ZIF-L/PEI can be obtained 5 minutes later by centrifugation and re-dispersed in ethanol. Finally, 0.1 mL PA solution was introduced into ZIF-L/PEI dispersion. The product ZIF-L/PEI/PA was collected by repeated centrifugation (at 6000 rpm for 20 min) and

washed with water for three times, and then dried in an oven at 70 °C overnight. The ZIF-L/PEI/PA hybrid was then heated in a tube furnace under Ar atmosphere from 50 °C to 700 °C with a heating rate of 2 °C min⁻¹, and maintained at 800 °C for 2 h. The final products were grounded to fine powders, named as Co₂P@CoNPC. As comparisons, the carbonization products of ZIF-L and ZIF-L/PEI are named Co@NC-Z and Co@NC-ZP. Moreover, ZIF-L/PEI/PA hybrids with different volumetric PA addition were also carbonized as catalysts. Catalysts obtained from different ZIF-L/PEI/PA hybrids were named as ZPP_{0.05} and ZPP_{0.5} based on volume of PA solution 0.05 and 0.5 mL.

Materials characterization

The morphology of the samples were observed by the scanning electron microscope (SEM, Hitachi S4800) and transmission electron microscopic (TEM, JEM-2100F). The crystalline phase was identified by X-ray diffraction (XRD, BRUKER D8 ADVANCE X-ray diffractometer, Cu-K α X-ray source). X-ray photoelectron spectroscopy (XPS) is recorded on an ESCALab220i-XL spectrometer with a 300W Al K α X-ray source.

Electrochemical measurements

The oxygen evolution reactions (OER) was performed on a CHI760E electrochemical workstation (Shanghai Chenhua, China). Electrodes were prepared by drop-casting ink containing catalyst powder on a glassy carbon electrode. 5 mg of the electrocatalyst sample was sonicated in a mixture of 1 mL deionized water and ethanol (v:v = 1:1) and 10 μ l Nafion for 60 min to form a homogeneous catalyst ink (5 mg·mL⁻¹). The activities of catalysts were measured via a conventional three-electrode system, including graphite rod auxiliary electrode and Ag/AgCl reference electrode. The catalyst ink was then coated onto the glassy carbon electrode at a loading of 10 μ l and dried at room temperature. The loading of the catalysts for the activity evaluation is calculated to be 0.255 mg·cm⁻². The OER activities of catalysts were measured in O₂-saturated 1 M KOH aqueous solution at 1600 rpm rotation rates and a scan rate of 5 mV·s⁻¹. All results reported in this work were converted to

the RHE scale according to the Nernst equation ($E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + 0.197$).

Fig. S1 (A) SEM image, (B) elemental mapping and (C) energy dispersive X-ray (EDX) spectrum of ZIF-L/PEI/PA.

Fig. S2 Survey XPS spectra of (a) Co@NC-Z, (b) Co@NC-ZP and (c) Co₂P@CoNPC.

Fig. S3 Linear scan voltammetry (LSV) of various samples for OER: $ZPP_{0.05}$ (black) and $ZPP_{0.5}$ (blue).

Fig. S4 XRD patterns of $ZPP_{0.05}$ (black) and $ZPP_{0.5}$ (blue).

Fig. S5 XRD patterns of $Co_2P@CoNPC$ hybrids after stability test.

Fig. S6 SEM images of Co₂P@CoNPC hybrids after stability test.

Fig. S7 (A) XPS survey spectra and high-resolution P 2p (B), Co 2p (C) spectra of $Co_2P@CoNPC$ hybrids after stability test.

Materials	Overpotential	Tafel slope	"P" sources	Referenc
	@J ₁₀ /mV	(mV dec⁻¹)		е
CoP ₃ CPs	343	76	Red phosphorus	2
CoP/NCNHP	310	70	$NaPO_2H_2$	3
CoP/rGO-400	340	66	$NaPO_2H_2$	4
CoP hollow polyhedron	400	57	$NaPO_2H_2$	5
Co-P/NC	319	52	$NaPO_2H_2$	6
Fe ₁ Co ₂ -P/C	362	50.1	$NaPO_2H_2$	7
NiCoP/C	330	96	$NaPO_2H_2$	8
Co ₂ P/CoNPC	328	78	Red phosphorus	9
C-CoP-1/12	333	71.1	$NaPO_2H_2$	10
Co2P@C	328	57	NaPO ₂ H ₂	11
Co ₂ P/CoNPC	311	78	Phytic acid	This work

Table S1 Summary of TMP-based electrocatalysts for OER in 1 M KOH.

References

[S1] J. Zhang, T. Zhang, D. Yu, K. Xiao and Y. Hong, CrystEngComm, 2015, 17, 8212-8215.

[S2] T. Wu, M. Pi and X. Wang, D. Zhang and S. Chen, *Phys. Chem. Chem. Phys.*, 2017, **19**, 2104-2110.

[S3] Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen and Y. Li, *J. Am. Chem. Soc.*, 2018, **140**, 2610-2618.

[S4] L. Jiao, Y. X. Zhou and H. L. Jiang, *Chem. Sci.*, 2016, **7**, 1690-1695.

[S5] M. Liu and J. Li, ACS Appl. Mater. Interfaces, 2016, 8, 2158-2165.

[S6] B. You, N. Jiang, M. Sheng, S. Gul, J. Yano and Y. Sun, Chem. Mater., 2015, 27, 7636-7642.

[S7] W. Hong, M. Kitta and Q. Xu, Small Methods, 2018, 2, 1800214.

[S8] P. He, X. Y. Yu and X. W. Lou, Angew. Chem. Int. Ed., 2017, 56, 3897-3900.

[S9] H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao, Z. Zhang, M. Dou, F. Wang and Q. Xu, *Adv. Mater.*, 2020, 2003649

[S10] W. Li, G. Cheng, M. Sun, Z. Wu, G. Liu, D. Su, B. Lan, S. Mai, L. Chen and L. Yu, *Nanoscale*, 2019, **11**, 17084-17092.

[S11] M. Yang, W. Zhu, R. Zhao, H. Wang, T. Ye, Y. Liu and D. Yan, *J. Solid State Chem.*, 2020, **288**, 121456.