Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Polypyrrole/PU hybrid hydrogels: electrically conductive and fast self-

healing for the potential application in body-monitor sensor

Zhanyu Jia^a, Guangyao Li^a, Juan Wang^a, Shouhua Su^a, Jie Wen^a, Jinfeng Yuan^{a,b}, Mingwang Pan*^{a,b},

Zhicheng Pan*a,b

a. Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology,

Hebei University of Technology, Tianjin 300130, PR China

b. Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130,

PR China

*E-mail: mwpan@126.com; panz@hebut.edu.cn

New Journal of Chemistry

Materials	Mechanical properties	Self-healing conditions, self-	Functionality	Water
PUASPy-0.2 ^[1]	Breaking elongation and ultimate tensile strength are 554 % and 1.1 MPa	10 min, 50 °C, 58 % efficiency	Conductive	72 %
PU10 ^[2]	Breaking elongation and ultimate tensile strength are 2000 % and 0.382 MPa	10 min, room temperature, 86.6 % efficiency	None	62 %
PVA-TA300(S) ^[3]	Breaking elongation and ultimate tensile strength are 630 % and 5.6 MPa	1 h, room temperature, 39.8 % efficiency	Adhesiveness	40 %
CNC-PEG ^[4]	Breaking elongation and ultimate tensile strength are 690 % and 0.3 MPa	24 h, 90 °C, 78 % efficiency	None	96 %
PANI/PSS-20UPy ^[5]	Breaking elongation and ultimate tensile strength are 650 % and 0.1 MPa	30 s, room temperature, 100 % efficiency	Conductive	78 %
A6ACA ^[6]	Breaking elongation and ultimate tensile strength are 580 % and 0.055 MPa	2s, pH<3, not mentioned	Adhesiveness	94 %
pAA-6βCD/pAA-Fc ^[7]	Continuous step strain measurements: G' of the pAA-6 b CD/pAA-Fc sol recovered to 90% of its initial state in 20 s	24 h, 24 °C, 84 % efficiency	Sol–gel phase transition	Not mentioned
Dex-L-PEG ^[8]	Storage modulus = ~ 5000 Pa from strain amplitude sweep (γ = 1.0%) of rheological test	7 h, pH =7.4 ,37 °C, 98.7% healing efficiency	None	Not mentioned
GCS-PEG ^[9]	Storage modulus = ~ 1000 Pa from amplitude oscillatory forces ($\gamma = 1.0\%$) of rheological test	within 15 min, centrally punched hole disappeared	Injectable	Not mentioned

 Table S1. Compare of self-healing hydrogels (Materials, Mechanical properties, Self-healing conditions and efficiency, Functionalization, and Water content)

Figure S1. Photographs of PUAS(a) and PUASPy-0.2(b) hydrogels

Figure S2. The mechanism of pyrrole polymerization

Figure S3. SEM micrographs of the PU0(a)/PU1(b) hydrogels (freeze-dried).

Figure S4. Storage modulus(G') and loss modulus(G") of PUAS and PUASPy-0.2 hydrogels

Figure S5. Tensile stress-strain curves of PUAS (a), PU0-0.2 (b) hydrogels at original and self-healing states

Figure S6. Optical microscopy images that recorded changes of the incision on the PUAS gel over time at 50 °C: A, 0 min; B, 5 min; C, 10 min

Figure S7. DSC of PPy, PUAS and PUASPy-0.2

Figure S8.¹H NMR spectrum (DMSO-D6) of PU prepolymer. δ (ppm) = 2.50-2.52 (DMSO-D6); 0.89, 0.97, 1.24, 2.34, 2.70(H_a, H_b, H_c, H_d –CH₂ of IPDI); 3.51 (H_e, -CH₂-CH₂- of PEG); 4.04, 6.30, 7.14 (H_f, H_i, H_l, -NH-); 5.51-5.56 (H_g, H_h -CH₃ of IPDI), 6.51 (H_j, -CH- of APDS), 7.07 (H_k, -CH- of APDS)

Figure S9. Resistance-strain curve of PUASPy-0.2 hydrogel

REFERENCE:

1. Y. Lin and G. Li, *J Mater Chem B*, 2014, **2**, 6878-6885.

2. H. Fan, J. Wang and Z. Jin, *Macromolecules*, 2018, **51**, 1696-1705.

3. C. Shao, M. Wang, H. Chang, F. Xu and J. Yang, *ACS Sustainable Chemistry & Engineering*, 2017, **5**, 6167-6174.

4. J. Chen, Q. Peng, T. Thundat and H. Zeng, *Chemistry of Materials*, 2019, **31**, 4553-4563.

5. A. Phadke, C. Zhang, B. Arman, C. C. Hsu, R. A. Mashelkar, A. K. Lele, M. J. Tauber, G. Arya and S. Varghese, *Proc Natl Acad Sci USA*, 2012, **109**, 4383-4388.

6. M. Nakahata, Y. Takashima, H. Yamaguchi and A. Harada, *Nat Commun*, 2011, **2**, 511.

7. Z. Wei, J. H. Yang, X. J. Du, F. Xu, M. Zrinyi, Y. Osada, F. Li and Y. M. Chen, *Macromol Rapid Commun*, 2013, **34**, 1464-1470.

8. B. Yang, Y. Zhang, X. Zhang, L. Tao, S. Li and Y. Wei, *Polymer Chemistry*, 2012, **3**, 3235-3238.

9. S. M. Kim, H. Jeon, S. H. Shin, S. A. Park, J. Jegal, S. Y. Hwang, D. X. Oh and J. Park, Adv Mater, 2018, **30**, 1705145.