Supporting Information

P- or S-Doped Graphdiyne as a Superior Metal-Free Electrocatalyst for Hydrogen Evolution Reaction: A Computational Study

Siyao Wang, ${ }^{a}$ Dongxu Jiao, ${ }^{a}$ Jingwei Liu, ${ }^{a, *}$ Jingxiang Zhao ${ }^{a,{ }^{*}}$ Yongchen Shang, ${ }^{a}$
${ }^{a}$ College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China

[^0]

Fig. S1. The computed band structure of pristine graphydine. The Fermi level was set to zero in bule dashed line.

Fig. S2. The obtained band structures of doped GDY systems with (a) $I_{P 1}$, (b) $I_{P 2}$, (c)
$I_{P 3}$, (d) $S_{P 1}$, (e) $S_{P 2}$, (f) $S_{P 3}$, (g) $S_{P 4}$, (h) $I_{S 1}$, (i) $I_{\mathrm{S} 2}$, (j) $I_{\mathrm{S} 3}$, (k) $S_{S 1}$, (l) $S_{\mathrm{S} 2}$, (m) $S_{S 3}$, and (n)
$\mathrm{S}_{\mathrm{S} 4}$. The Fermi level was set to zero in blue dotted line.

Fig. S3. The computed isosurfaces of spin density for (a) $I_{P 1}$, (b) $I_{P 2}$, (c) $I_{P 3}$, (d) $S_{P 2}$, (e) $\mathrm{S}_{\mathrm{P} 3}$, (f) $\mathrm{S}_{\mathrm{P} 4}$, (g) $\mathrm{I}_{\mathrm{S} 3}$, and (h) $\mathrm{S}_{\mathrm{S} 4}$.

Fig. S4. Variations of temperature and energy versus the time for AIMD simulations under 500 K for 10 ps with a time step of 1 fs and the corresponding schematic diagrams of the atomic configurations after dynamics simulation (top and side views) for (a) $I_{P 1}$ and (b) $\mathrm{S}_{\mathrm{P} 1}$.

Fig. S5. The computed p-projected density of states of (a) $I_{P 1}$, (b) $I_{P 2}$, (c) $I_{P 3}$, (d) $S_{P 1}$, (e) $S_{P 2}$, (f) $S_{P 3}$, (g) $S_{P 4}$, (h) $I_{S 1}$, (i) $I_{S 2}$, (j) $I_{\mathrm{S} 3}$, (k) $S_{S 1}$, (l) S_{S}, (m) $S_{S 3}$, and (n) $S_{S 4}$. The Fermi level was set to zero in red dotted line.

[^0]: * To whom correspondence should be addressed. Email: xjz_hmily@163.com or zhaojingxiang@hrbnu.edu.cn (JZ) ; Siyao Wang and Dongxu Jiao contributed equally.

