Supporting Information

A novel triple aqua, phenoxo and carboxylato bridged dinickel(II) complex and its magnetic and comparative biomimetic catalytic studies with analogous dinickel(II) complexes

Narayan Ch. Jana,^a Zvonko Jagličić,^b Paula Brandão,^c Sarmistha Adak,^{a,d} Amrita Saha^e and Anangamohan Panja^{*a,d}

^a Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
^b Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
^c Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
^dDepartment of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
^e Department of Chemistry, Jadavpur University, Kolkata-700032, India

* Corresponding author e-mail: ampanja@yahoo.co.in

Bond Angles	1	2	3
	1	1	
Ni1–O1–Ni2	101.77(6)	100.30(4)	104.72(6)
Ni1–O2–Ni2	106.32(7)	101.25(4)	93.30(6)
O2–Ni1–N1	152.58(6)	166.87(4)	164.45(6)
O2-Ni1-O1	76.02(5)	78.19(4)	77.60(6)
N1-Ni1-O1	89.36(6)	88.69(4)	86.93(6)
O2–Ni1–N2	91.31(6)	97.73(4)	99.62(6)
N1–Ni1–N2	96.44(6)	95.37(4)	95.71(7)
O1–Ni1–N2	161.53(6)	172.59(4)	175.29(6)
O2-Ni1-N3	100.94(6)		
N1–Ni1–N3	104.31(6)		
O1–Ni1–N3	99.41(6)		
N2–Ni1–N3	96.14(6)		
N1–Ni1–N7		89.56(5)	
O2-Ni1-N7		91.49(4)	
N7-Ni1-O1		96.62(4)	
N7–Ni1–N2		89.63(5)	
N1–Ni1–N8		87.76(5)	
O2–Ni1–N8		92.22(4)	
N7–Ni1–N8		174.46(5)	
O1–Ni1–N8		88.16(4)	
N2–Ni1–N8		85.81(5)	
O3-Ni1-O1			92.47(6)
O3–Ni1–N1			88.49(6)
O3-Ni1-O5			178.62(6)
01-Ni1-O5			88.90(6)
N1–Ni1–O5			91.38(6)
O3-Ni1-N2			91.50(7)
O5–Ni1–N2			87.14(7)
O3-Ni1-O2			93.75(6)
O5–Ni1–O2			86.75(6)
O2-Ni2-O1	75.85(5)	80.20(4)	76.01(6)
O2–Ni2–N4	155.36(6)	169.01(4)	94.45(7)
O1–Ni2–N4	88.62(6)	89.52(4)	86.99(6)
O2–Ni2–N5	91.25(6)	97.41(4)	89.45(7)
O1–Ni2–N5	158.47(6)	107.51(4)	165.26(7)
N4-Ni2-N5	97.10(7)	89.37(5)	96.63(7)
O2–Ni2–N6	101.22(6)		169.83(6)
O1–Ni2–N6	102.27(6)		100.01(6)
N4-Ni2-N6	100.71(6)		94.68(7)
N5-Ni2-N6	97.05(7)		93.94(7)
N4-Ni2-N9		94.40(5)	
N9-Ni2-O1		152.74(4)	
N9-Ni2-O2		93.01(4)	
N9–Ni2–N5		99.51(5)	
O1-Ni2-O4			90.10(6)
N4-Ni2-O4			176.60(7)
O4–Ni2–N5			85.75(7)
O4–Ni2–N6			87.56(6)
04–Ni2–O2			83.12(6)

Table S1. Selected bond angles (°) for complexes 1-3.

Fig.S1. IR spectra of complexes 1–3.

Fig. S2. UV-Vis Spectra of the complexes **1–3** at [Complex] = $5x10^{-5}$ (M) whereas the inset spectra were recorded at [Complex] = $1x10^{-3}$ (M).

Fig. S3. TGA plot for complex 3.

Fig. S4. The crystal packing of complex 1 displaying different hydrogen bonding interactions.

Fig. S5. The crystal packing of complex 2 displaying different weak non-covalent interactions.

Fig. S6. The crystal packing of complex 3 displaying different hydrogen bonding interactions.

Fig. S7. Crystal structures of **1–3** showing edge sharing bi-polyhedral structures and hydrogen atoms have been omitted for clarity.

Fig. S8. Linear Lineweaver–Burk plots for the oxidation of *o*-aminophenol catalysed by **1-3**. Symbols and solid lines represent experimental and simulated profiles, respectively.

Fig. S9. Electrospray ionization mass spectrum (ESI-MS positive) of 2.

Fig. S10. Electrospray ionization mass spectrum (ESI-MS positive) of a 1:50 mixture of **2** and OAPH in methanol recorded after 10 min of mixing.