New Journal of Chemistry

Supporting Information

Third-order nonlinear optical properties of axially modified indium

phthalocyanine with alkyl chain

Lan Chen,^a Chunying He,^{*a} Dongmei Liu,^a Yi Zheng,^{*b} Wanlu Li,^a and Yanli Zu^a

E-mail: chunyinghe_hlju@163.com (Chunying He) and wind_2000_love@163.com (Yi Zheng).

^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China

^b School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, PR China

The MALDI-TOF MS spectrum spectra of (InClPc, 4) is shown in the Fig. S1. 1168.4 corresponds to the molecular weight of Cl removed from (InClPc, 4), and (InClPc, 4) is combined with CCA. The value corresponding to (InClPc, 4) is 1015.4. This value corresponds the molecular weight of (InClPc, 4).

Fig. S2 The MALDI-TOF MS spectrum of ((C₂)InPc, 5).

The MALDI-TOF MS spectrum spectra of $((C_2)InPc, 5)$ is shown in the Fig. S2. 1009.4 corresponds to the molecular weight of $[(C_2)InPc + H]^+$.

Fig. S3 The MALDI-TOF MS spectrum of ((C₃)InPc, 6)

The MALDI-TOF MS spectrum spectra of $((C_3)InPc, 6)$ is shown in the Fig. S3. 1023.4 corresponds to the molecular weight of $[(C_3)InPc + H]^+$, and 1067.5 corresponds to the molecular weight of $[(C_3)InPc + [C_3H_7]^+]$. 1168.4 corresponds to the molecular weight of $[InClPc^+ + CCA]$, and 1212.4 corresponds to the molecular weight of $[(C_3)InPc + CCA]$.

Fig. S4 The MALDI-TOF MS spectrum of ((C₄)InPc, 7).

The MALDI-TOF MS spectrum spectra of ((C₄)InPc, 7) is shown in the Fig. S4. 1037.5 corresponds to the molecular weight of $[(C_4)InPc + H]^+$, and 1095.5 corresponds to the molecular weight of $[(C_4)InPc + [C_4H_9]^+]$. 1168.4 corresponds to the molecular weight of $[InCIPc^+ + CCA]$, and 1226.5 corresponds to the molecular weight of $[(C_4)InPc + CCA]$.

Fig. S5 The MALDI-TOF MS spectrum of ((C₅)InPc, 8).

The MALDI-TOF MS spectrum spectra of $((C_5)InPc, 8)$ is shown in the Fig. S5. 1051.5 corresponds to the molecular weight of $[(C_5)InPc + H]^+$.

The MALDI-TOF MS spectrum spectra of phthalonitrile (3) is shown in the Fig. S6. 217.2 corresponds to the molecular weight of $[3 + H]^+$.

Fig. S7 ¹H NMR spectrum of tetra-[3-(2-ethoxy)ethoxy] phthalonitrile (3).

Fig. S13 FT-IR spectra of complexes phthalonitrile (3), (InClPc, 4), ((C₂)InPc, 5), ((C₃)InPc, 6) ((C₄)InPc, 7) and ((C₅)InPc, 8).

Fig. S14 Nodal patterns of the frontier π -MOs of 4, 5, 6, 7 and 8 in TD-DFT calculations.

Theoretical calculations were performed to study the HOMO/LUMO information of complexes **4**-**8** using the LANL2DZ with basis set of the 6-31G(d) level by the Gaussian 09 package. And PCM model with Dimethyl sulfoxide as the solvent were performed. Figure S14, shows the HOMO/LUMO gap energies of complexes **4-8**.

Fig. S15 Open-aperture Z-scan curve of the C8 excited under 4ns pulses at 532 nm.

Fig. S16 Energy level diagrams to explain the dynamics of the transient state population of complexes **5-8**.

studied at 532 nm using nanosecond pulses.						
Sample	Wavelength	Concentration	T (%)	Intensity	β/α_2	Reference
		$(mol L^{-1})$		(W/cm^2)	(cm/GW)	
alkovy					1650 (Pc1)	62
акоху	532 nm, 6 ns		70	3.1×10 ⁶	1850 (Pc2)	
phthalocyanines						
					310 (Pc1)	63
alkyl	532 nm, 6 ns	5×10-4	~75	6×10 ⁶	420 (Pc2)	
phthalocyanines						
InClPc	532 nm, 4 ns	2×10 ⁻⁴	<mark>90</mark>	2.70×10 ⁸	18.58	In this work
(C ₂)InPc	532 nm, 4 ns	2×10 ⁻⁴	88	2.70×10 ⁸	22.15	In this work
(C3)InPc	532 nm, 4 ns	2×10 ⁻⁴	<mark>90</mark>	2.70×10 ⁸	23.67	In this work
(C ₄)InPc	532 nm, 4 ns	2×10-4	<mark>90</mark>	2.70×10 ⁸	24.45	In this work
(C5)InPc	532 nm, 4 ns	2×10 ⁻⁴	87	2.70×10 ⁸	26.06	In this work

Table. S1 The values of the nonlinear absorption coefficients of phthalocyanine complexes studied at 532 nm using nanosecond pulses.