Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

The synthesis and structure of an amazing and stable carbonized material Cu-PC@OFM and catalytic applications in water with mechanism explorations

An-Qi Tian,^a Xiang-Hao Luo,^a Zhi-Lin Ren,^b Jun Zhao,^a and Long Wang^{*a}

^a Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.

^b College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China.

wanglongchem@ctgu.edu.cn (L. Wang)

Table of contents

1. General information	S2-S2
2. Details of experimental procedures	S2-S2
2.1. Synthesis of Cu-PC@OFM	.S2-S2
2.2. Typical procedure for the synthesis of 4a	S2-S2
2.3. Typical procedure for the synthesis of 6a	S2-S2
2.4. The original data of Leaching of the metal-catalysts experiments	.S2-S3
2.5. Hot filtration test for the reaction of phenylenediamine and	benzyl
alcohols	.S3-S3
3. Characterization Data for 4a-4o and 6a-6o	S4-S8
4. Copies of ¹ H and ¹³ C NMR spectras of compounds 4 and 6	S9-37

1. General Experiments.

All the obtained products were characterized ¹H NMR spectra and ¹³C NMR spectra (400 or 100 MHz). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m); TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization was effected at 254 nm; All the reagents were purchased from commercial sources and used without further purification.

2. Details of experimental procedures.

2.1. Synthesis of Cu-PC@OFM

Cu-MOF-199 was synthesized to the procedure reported previously using trimesic acid as a modulator. Thereafter, the mixed solution was filtered, washed, and dried to obtain blue crystals. Afterward, the obtained solid was then placed in a muffle furnace and purged with nitrogen, raised to 400 °C at the rate of 1 °C/min, and reacted for 5 hours. Thereafter, the temperature was lowered to room temperature to obtain dark brown solid powder.

2.2. Typical procedure for the synthesis of 4a

In a 25ml Schlenk tube, benzene-1,2-diamine **1a** (1 mmol), KOH (1.5 mmol), Cu-PC@OFM (10mg), TBAF (0.15 mmol) and (3,5-difluorophenyl)methanol **2a** (2.6 mmol) were added followed by H₂O (4mL), and then the reaction mixture was heated at 100°C for 48h. After the reaction was completed, the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether=1:20, v/v) to give 1-benzyl-2-aryl-1*H*-benzo[d]imidazole **4a**.

2.3. Typical procedure for the synthesis of 6a

In a 25ml Schlenk tube, phenylmethanol **2g** (1.2 mmol), KOH (1.0 mmol), Cu-PC @OFM (10mg), TBAF (0.15 mmol) and aniline **5a** (1.0 mmol) were added followed by H₂O (4mL), and then the reaction mixture was heated at 110°C for 48h. After the reaction was completed, the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether=1:60, v/v) to give N-benzyl compound **6a**.

2.4. The original data of Leaching of the metal-catalysts experiments

The test data

						Element		
						concentr	Elemen	
				The		ation of	t	Element
	The	Constant		concentratio	Dilutio	digestion	content	contant
Sample	sample	volumo	Test	n of	n	solution /	of	of
number	quality	Volume V. (m.L.)	element	elements in	multipl	original	sample	01
	m ₀ (g)	v ₀ (mL)		the solution	ef	sample	С	
				C _o (mg/L)		solution	(mg/kg	w (%)
						C_1)	
						(mg/L)		
1	0.9229	10	Cu	0.7238	1	0.7238	7.84	0.0008%

2.5. Hot filtration test for the reaction of phenylenediamine and benzyl alcohols

Entry	Catalyst	Time(h)	Yield
1	With catalyst	12	53
2	After filtration	24	53

CondItions: **1a** (1 mmol), **2a** (2.6 mmol), Cu-PC @OFM (10 mg), KOH (1.0 equiv.), TBAF (15 mol%), H₂O (4 mL), 100 °C.

3. Characterization Data

3.1 Characterization Data for 4a-4o

4a: 1-(3,5-difluorobenzyl)-2-(3,5-difluorophenyl)-1H-benzo[d]imidazole

Yield: 82%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.88(d, J=8.0 Hz, 1H, Ar-H), 7.38-7.29(m, 2H, Ar-H), 7.22-7.19(m, 3H, Ar-H), 6.97-6.91(m, 1H, Ar-H), 6.79-6.73(m, 1H, Ar-H), 6.60(d, J=5.6 Hz, 2H, Ar-H), 5.43(s, 2H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 164.83 (d, JCF = 12.7 Hz), 164.25 (d, JCF = 12.8 Hz), 162.34 (d, JCF = 12.7 Hz), 161.76 (d, JCF = 12.8 Hz), 151.23, 142.90,

139.86, 135.84, 132.69, 124.08, 123.43, 120.53, 112.37, 112.10, 110.14, 109.06, 108.79, 105.59, 103.73, 47.63.

4b: 1-(2,5-difluorobenzyl)-2-(2,5-difluorophenyl)-1H-benzo[d]imidazole

Yield: 67%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.87(d, J=7.2 Hz, 1H, Ar-H), 7.40-7.36(m, 1H, Ar-H), 7.37-7.30(m, 2H, Ar-H), 7.28-7.24(m, 1H, Ar-H), 7.21-7.16(m, 2H, Ar-H), 7.03-6.97(m, 1H, Ar-H), 6.94-6.88(m, 1H, Ar-H), 6.49-6.45(m, 1H, Ar-H), 5.36(s, 2H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ(ppm) 159.91 (dd, JCF = 6.1, 2.3 Hz), 157.23 (dd, JCF = 14.9, 2.5 Hz), 157.48 (dd, JCF = 7.3, 2.2 Hz), 154.81 (dd, JCF = 12.0, 2.6 Hz), 147.91, 143.23, 135.12, 123.82, 123.07, 120.47, 117.48, 117.32, 116.73, 116.57, 116.20, 116.05, 115.03, 114.80, 110.33, 42.14.

4c: 1-(3,4-difluorobenzyl)-2-(3,4-difluorophenyl)-1H-benzo[d]imidazole

Yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.89(d, J=4.8 Hz Hz, 1H, Ar-H), 7.55-7.50(m, 1H, Ar-H), 7.38-7.34(m, 2H, Ar-H), 7.33-7.29(m, 1H, Ar-H), 7.24-7.21(m, 2H, Ar-H), 7.18-7.11 (m, 1H, Ar-H), 6.93-6.88(m, 1H, Ar-H), 6.80(d, J=12.0 Hz, 1H, Ar-H), 5.39(s, 2H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 152.89 (d, JCF = 12.4 Hz), 152.12 (d, JCF=12.4 Hz), 150.36 (d, JCF = 12.5 Hz),

149.56 (d, JCF = 13.1 Hz), 148.69, 142.61, 135.63, 125.52, 123.91, 123.42, 121.87, 120.22, 118.72, 118.54, 118.30, 118.11, 117.93, 115.03, 110.21, 47.37.

4d: 1-(4-fluorobenzyl)-2-(4-fluorophenyl)-5-methyl-1H-benzo[d]imidazole

Yield: 87%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.72 (d, J=8.0Hz, 1H, Ar-H), 7.63-7.58(m, 2H, Ar-H), 7.14-7.08(m, 3H, Ar-H), 7.06(s, 1H, Ar-H), 7.02-6.97 (m, 4H, Ar-H), 5.32(s, 2H, CH₂), 2.45(d, J=20.0Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 164.75 (d, JCF = 2.9 Hz), 162.27 (d, JCF = 2.8 Hz)

160.87, 152.43, 143.29, 141.07, 136.06, 133.21, 132.43, 131.00, 127.47, 126.20, 124.35, 119.42, 116.02, 115.85, 115.64, 109.97, 47.50, 21.66.

4e: 1-(3-chlorobenzyl)-2-(3-chlorophenyl)-1H-benzo[d]imidazole

Yield: 80%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.88(d, J=8.0Hz, 1H, Ar-H), 7.72-7.71(m, 1H, Ar-H), 7.50-7.45(m, 2H, Ar-H), 7.39(d, J=8.0Hz, 1H, Ar-H), 7.36-7.32(m, 1H, Ar-H), 7.30-7.26(m, 3H, Ar-H), 7.24-7.21(m, 1H, Ar-H), 7.11(s, 1H, Ar-H), 6.94-6.92(d, J=8.0Hz, 1H, Ar-H), 5.40(s, 2H, CH₂). ¹³C NMR

(101 MHz, CDCl₃) δ(ppm) 152.46, 143.06, 138.17, 135.91, 135.17, 134.94, 131.64, 130.45,

130.11, 130.02, 129.48, 128.25, 127.02, 126.19, 124.05, 123.61, 123.07, 120.29, 110.29, 47.86.

4f: 1-(2-chlorobenzyl)-2-(2-chlorophenyl)-1H-benzo[d]imidazole

Yield: 71%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.89(d, *J*=8.0Hz, 1H, Ar-H), 7.51(d, *J*=8.0Hz, 1H, Ar-H), 7.46-7.41(m, 2H, Ar-H), 7.34-7.29(m, 3H, Ar-H), 7.28-7.25(m, 1H, Ar-H), 7.22(s, 1H, Ar-H), 7.20-7.15(m, 1H, Ar-H), 7.07-7.04(m, 1H, Ar-H), 6.64-6.62(d, *J*=8.0Hz, 1H, Ar-H), 5.36(s, 2H, CH₂). ¹³C NMR (101

MHz, CDCl₃) δ(ppm) 151.47, 143.03, 134.78, 134.33, 133.26, 132.35, 132.10, 131.37, 129.87, 129.65, 129.55, 128.94, 127.73, 127.07, 126.91, 123.34, 122.68, 120.34, 110.48, 45.67.

4g: 1-benzyl-2-phenyl-1H-benzo[d]imidazole

Yield: 84%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.87(d, *J*=8.0Hz, 1H, Ar-H), 7.69-7.67(m, 2H, Ar-H), 7.46-7.43(m, 3H, Ar-H), 7.34-7.28(m, 4H, Ar-H), 7.22-7.18(m, 2H, Ar-H), 7.10-7.08(d, *J*=8.0Hz, 2H, Ar-H), 5.44(s, 2H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ(ppm) 154.08, 143.12, 136.33, 136.00, 130.03, 129.83,

129.20, 128.97, 128.67, 127.70, 125.91, 122.97, 122.60, 119.92, 110.45, 48.30.

4h: 1-(2-methylbenzyl)-2-(o-tolyl)-1H-benzo[d]imidazole

Yield: 72%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.87(d, *J*=8.0Hz, 1H, Ar-H), 7.32(d, *J*=8.0Hz, 1H, Ar-H), 7.28-7.24(m, 3H, Ar-H), 7.21-7.18(m, 1H, Ar-H), 7.16-7.13(m, 2H, Ar-H), 7.10-7.07(m, 2H, Ar-H), 6.99-6.95(m, 1H, Ar-H), 6.63-6.61(d, *J*=8.0Hz, 1H, Ar-H), 5.15(s, 2H, CH₂), 2.22(s, 3H, CH₃), 2.11(s, 3H,

CH₃). ¹³C NMR (101 MHz, CDCl₃) δ(ppm) 153.65, 142.92, 138.10, 134.85, 134.59, 133.81, 130.34, 130.14, 129.62, 129.57, 127.29, 126.10, 125.81, 125.38, 122.59, 122.10, 119.78, 110.31, 45.52, 19.56, 18.78.

4i: 1-(4-methylbenzyl)-2-(p-tolyl)-1H-benzo[d]imidazole

Yield: 72%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.85(d, *J*=8.0Hz, 1H, Ar-H), 7.58(d, *J*=8.0Hz, 2H, Ar-H), 7.29-7.25(m, 1H, Ar-H), 7.24(s, 1H, Ar-H), 7.22-7.17(m, 3H, Ar-H), 7.11-7.09(d, *J*=8.0Hz, 2H, Ar-H), 6.98-6.96(d, *J*=8.0Hz, 2H, Ar-H), 5.36(s, 2H, CH₂), 2.37(s, 3H, CH₃), 2.30(s, 3H, CH₃). ¹³C NMR (101

MHz, CDCl₃) δ(ppm) 154.15, 143.03, 139.85, 137.26, 135.96, 133.32, 129.53, 129.28, 129.02, 127.06, 125.76, 122.68, 122.39, 119.65, 110.37, 48.01, 21.25, 20.91.

4j: 5-methyl-1-(4-methylbenzyl)-2-(p-tolyl)-1H-benzo[d]imidazole

Yield: 86%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.56-7.54(m, 2H, Ar-H), 7.18-7.15(m, 2H, Ar-H), 7.08-7.03(m, 3H, Ar-H), 7.00-6.96(m, 1H, Ar-H), 6.93-6.90(m, 3H, Ar-H), 5.26(s, 2H, CH₂), 2.40(d, *J*=8.0Hz, 1H, CH₃), 2.32(s, 3H, CH₃), 2.26(d, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ(ppm) 153.87,

153.50, 143.28, 141.08, 139.48, 139.42, 136.94, 136.15, 133.97, 133.36, 132.45, 131.76, 129.36, 129.05, 128.75, 127.12, 125.50, 123.83, 119.31, 119.04, 109.99, 109.72, 47.64, 21.49, 21.04, 20.72.

4k: 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzo[d]imidazole

Yield: 74%. ¹H NMR (400 MHz, DMSO) δ (ppm) 7.82(d, J=8.0Hz, 1H, Ar-H), 7.74-7.68(m, 3H, Ar-H), 7.40(d, J=8.0Hz, 1H, Ar-H), 7.31-7.24(m, 3H, Ar-H), 7.04 (d, J=4.0Hz, 1H, Ar-H), 6.97-6.95(m, 1H, Ar-H), 5.94(s, 2H, CH₂). ¹³C NMR (101 MHz, DMSO) δ(ppm) 146.71, 142.36, 139.27, 135.78, 132.01, 129.60, 128.33,

127.81, 126.99, 126.01, 125.89, 122.86, 122.52, 118.90, 110.74, 43.00.

4m: 1-(2-methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzo[d]imidazole

Yield: 70%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.87(d, J=4.0Hz, 1H, Ar-H), 7.66(d, J=8.0Hz, 2H, Ar-H), 7.33-7.28(m, 1H, Ar-H), 7.23-7.21(m, 2H, Ar-H), 7.05-6.97(m, 4H, Ar-H), 6.86(d, J=12.0Hz, 2H, Ar-H), 5.38(s, 1H, CH₂), 3.85(s, 3H, CH₃), 3.79(s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ(ppm) 160.91, 159.05, 153.99, 143.07, 136.00, 130.61, 128.39, 127.13, 122.63, 122.41, 122.37, 119.60,

114.34, 114.10, 110.33, 55.25, 55.17, 47.77.

4n: 1-(4-chlorobenzyl)-2-(4-chlorophenyl)-5-methyl-1H-benzo[d]imidazole

Yield: 89%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.74-7.60(m, 1H, Ar-H), 7.56-7.54(m, 2H, Ar-H), 7.40-7.38(m, 2H, Ar-H), 7.28-7.26(m, 2H, Ar-H), 7.14-7.03(m, 1H, Ar-H), 7.00-6.96(m, 3H, Ar-H), 5.32(s, 1H, CH₂), 2.48-2.40(m, 3H, CH₃).¹³C NMR (101 MHz, CDCl₃) δ(ppm) 152.55, 152.18,

143.26, 141.07, 136.08, 134.67, 133.90, 133.57, 133.41, 132.57, 130.17, 129.18, 128.90, 128.38, 127.06, 124.77, 124.49, 119.49, 109.92, 47.46, 21.69.

40: 1-(4-ethylbenzyl)-2-(4-ethylphenyl)-5-methyl-1H-benzo[d]imidazole

Yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.73(d, J=8.0Hz, 1H, Ar-H), 7.61-7.58(m, 2H, Ar-H), 7.25-7.22(m, 2H, Ar-H), 7.14-7.08(m, 3H, Ar-H), 7.01-6.97(m, 3H, Ar-H), 5.34(s, 2H, CH₂), 2.69-2.59(m, 4H, 2CH₂), 2.39(s, 3H, CH₃), 1.25-1.17(m, 6H, 2CH₃). ¹³C NMR (101 MHz, CDCl₃) δ(ppm) 154.11, 153.74, 145.90, 143.49, 143.42, 141.22, 136.31, 134.11, 133.76, 132.64, 131.97, 129.03, 128.34, 128.04, 127.45, 125.74, 123.98, 119.48, 119.20, 110.16, 47.90, 28.31, 21.67, 15.17.

3.2 Characterization Data for 6a-6o

N-benzylaniline (6a)

¹H NMR (CDCl₃, 400 MHz) δ (ppm) 7.37-7.31 (m, 4H, Ar-H), 7.29-7.26 (m, 1H, Ar-H), 7.17 (t, J = 8.0 Hz, 2H, Ar-H), 6.71 (t, J = 8.0 Hz, 1H, Ar-H), 6.63 (d, J = 7.6 Hz, 2H, Ar-H), 4.32 (s, 2H, CH₂), 4.01 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 148.10, 139.38, 129.23, 128.60, 127.47, 127.19, 117.51, 112.79, 48.26.

(6b) N-benzyl-4-methylaniline

¹H NMR (CDCl₃, 400 MHz) δ (ppm) 7.37-7.22 (m, 5H, Ar-H), 6.98 (d, J = 8.4 Hz, 2H, Ar-H), 6.57-6.54 (m, 2H, Ar-H), 4.30 (s, 2H, CH₂), 3.89 (s, 1H, NH), 2.23 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 145.88, 139.61, 129.71, 128.56, 127.45, 127.11, 126.70, 112.94, 48.58, 20.36.

N-benzyl-4-fluoroaniline (6c)

¹H NMR (CDCl₃, 400 MHz) δ (ppm) 7.34-7.23 (m, 5H, Ar-H), 6.86 (t, *J* = 8.8 Hz, 2H, Ar-H), 6.57-6.53 (m, 2H, Ar-H), 4.27 (s, 2H, CH₂), 3.88 (s, 1H, NH); ¹³C NMR (100MHz, CDCl₃) δ (ppm) 157.15, 154.81, 144.54, 139.31, 128.66, 127.48, 127.30, 115.77, 115.54, 113.76 (d, JCF = 7.4 Hz), 49.02.

N-benzyl-3-chloroaniline (6d)

¹H NMR (CDCl₃, 400 MHz) δ (ppm) 7.35-7.23 (m, 5H, Ar-H), 7.05 (t, *J* = 8.0 Hz, 1H, Ar-H), 6.68-6.65 (m, 1H, Ar-H), 6.60 (t, *J* = 2.2 Hz, 1H, Ar-H), 6.78(dd, *J* = 1.6, 8.0 Hz, 1H, Ar-H), 4.29 (s, 2H, CH₂), 4.09 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 149.16, 138.69, 134.96, 130.17, 128.69, 127.42, 127.40, 117.35,

112.42, 111.08, 48.03.

N-(4-methylbenzyl)aniline (6e)

¹H NMR (CDCl₃, 400 MHz) δ (ppm) 7.27-7.13 (m, 6H, Ar-H), 6.70(t, J = 7.2Hz, 1H, Ar-H), 6.62 (d, J = 7.6 Hz, 2H, Ar-H), 4.27 (s, 2H, CH₂), 3.96 (s, 1H, NH), 2.34 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 148.17, 136.83, 136.30, 129.27, 129.21, 127.48, 117.43, 112.77, 48.01, 21.07.

N-(2-methylbenzyl)aniline (6f)

¹H NMR (CDCl₃, 400 MHz) δ (ppm) 7.42-7.24 (m, 6H, Ar-H), 6.80 (t, J = 7.6 Hz, 1H, Ar-H), 6.71 (d, J = 7.6 Hz, 2H, Ar-H), 4.34 (s, 2H, CH₂), 3.90 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 148.24, 136.95, 136.31, 130.37, 129.24, 128.21, 127.38, 126.12, 117.40, 112.63, 46.32, 18.91.

N-(4-chlorobenzyl)aniline (6g)

¹H NMR (400 MHz, CDCl3) δ (ppm) 7.30 (s, 4H, Ar-H), 7.20 – 7.15 (m, 2H, Ar-H), 7.11 – 7.02 (m, 1H, Ar-H), 6.72 (t, J = 7.3 Hz, 1H, Ar-H), 6.60 (d, J = 8.5 Hz, 2H, Ar-H), 4.31 (s, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 147.80, 137.97, 132.85, 129.27, 128.81, 128.73, 117.78, 114.09, 113.76, 112.86, 47.58.

N-(4-methoxybenzyl)aniline (6h)

¹H NMR (CDCl₃, 400 MHz) δ (ppm) 7.30-7.15 (m, 4H, Ar-H), 6.89-6.86(m, 2H, Ar-H), 6.71(t, *J* = 7.6 Hz, 1H, Ar-H), 6.63 (d, *J* = 7.6Hz, 2H, Ar-H), 4.24 (s, 2H, CH₂), 3.94 (s, 1H, NH), 3.79 (s, 3H, OCH₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 158.79, 148.15, 131.35, 129.21, 128.77, 117.45, 113.96, 112.78, 55.26,

47.73.

N-(4-fluorobenzyl)aniline (6i)

¹H NMR (CDCl₃, 400 MHz) δ (ppm) 7.34-7.15 (m, 4H, Ar-H), 7.01(t, J = 8.8 Hz, 3H, Ar-H), 6.72 (t, J = 7.2 Hz, 1H, Ar-H), 6.61 (d, J = 7.6 Hz, 2H, Ar-H), 4.28 (s, 2H, CH₂), 4.00 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.21, 160.77, 147.88, 135.06, 129.25, 128.95 (d, JCF =7.9 Hz), 117.68, 115.50, 115.29, 112.81,

47.54.

N-(3-chlorobenzyl)aniline (6j)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.41 (s, 1H, Ar-H), 7.40 – 7.29 (m, 3H, Ar-H), 7.21-7.25 (m, 2H, Ar-H), 6.81 (d, *J*=7.4Hz, 1H, Ar-H), 6.50 (d, *J*=8.6Hz, 2H, Ar-H), 4.20(s, 2H, CH₂), 4.12(s, NH); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 147.81, 147.78, 134.56, 129.80, 129.34, 127.50, 127.42, 125.44, 117.92, 112.90, 47.82.

4-methyl-N-(pyridin-4-ylmethyl)aniline (6k)

¹H NMR (CDCl₃, 400 MHz) δ (ppm) 8.53 (d, J = 6.0 Hz, 2H, Py-H), 7.28 (d, J = 6.0 Hz, 2H, Py-H), 6.97 (d, J = 8.0 Hz, 2H, Ar-H), 6.50 (d, 2H, J = 8.4 Hz, Ar-H), 4.35 (s, 2H, CH₂), 4.11 (s, 1H, NH), 4.02 (s, 1H, NH), 2.23 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 149.87, 149.20, 145.10, 129.79, 127.25, 122.04, 112.94,

47.30, 20.32.

N-benzhydrylaniline (6l)

¹H NMR (CDCl₃, 400 MHz) δ (ppm) 7.39-7.29 (m, 8H, Ar-H), 7.27-7.23 (m, 3H, Ar-H), 6.70-6.66 (m, 1H, Ar-H), 5.09 (s, 1H, CH), 4.22 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 147.30, 142.88, 129.09, 128.72, 127.41, 127.32, 120.59, 117.60, 113.42, 63.00.

N-(1-phenylpropyl)aniline (6m)

6m

¹H NMR (CDCl₃, 400 MHz) δ (ppm) 7.34-7.28 (m, 4H, Ar-H), 7.23-7.19 (m, 1H, Ar-H), 7.09-7.05 (m, 2H, Ar-H), 4.22 (t, J = 6.8 Hz, 1H, CH), 4.05 (s, 1H, NH), 1.84-1.79 (m, 2H, CH₂), 0.95 (t, J = 7.6 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 147.50, 143.90, 129.05, 128.46, 126.85, 126.45, 117.09, 113.22, 59.70, 31.63,

10.79.

N-isopropylaniline (6n)

¹H NMR (CDCl₃, 400 MHz) δ (ppm) 7.18-7.14 (m, 2H, Ar-H), 6.69-6.57 (m, 3H, Ar-H), 3.65-3.59 (m, 1H, CH), 3.45-3.39 (m, 1H, NH), 1.20 (d, *J* = 6.4 Hz, 6H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 147.42, 129.23, 116.92, 113.20, 44.16, 30.98, 22.97.

N-benzylnaphthalen-1-amine (60)

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.80 (d, J = 8.0 Hz, 2H, Ar-H), 7.35 (ddd, J = 52.9, 33.1, 12.3 Hz, 9H, Ar-H), 6.62 (d, J = 7.1 Hz, 1H, Ar-H), 4.69 (s, 1H, NH), 4.48 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 143.14, 139.03, 134.22, 128.68, 127.70, 127.36, 126.57, 125.72, 124.72, 123.29, 119.85, 117.58, 104.68,

48.55.

4. Copies of ¹H and ¹³C NMR spectra

7.883 7.865 7.865 7.297 7.297 6.482 6.442 6.447 6.447 6.447 6.447 6.447 6.447 6.447 6.447 6.447 6.447 6.447 6.447 6.447 5.357

$$< 7.902$$
 < 7.882
 < 7.882
 < 7.821
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331
 < 7.331

----0.000

6c

-4.306

7.1299 7.1189 7.149 6.742 6.724 6.724 6.615 6.594 ---0.000

