Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Rh(III)-Catalyzed C-H/N-H Annulation of 2-Thienyl- and 2-Phenyl-Quinazolin-4(3*H*)-ones with Diphenylacetylene

Tatyana N. Moshkina, Emiliya V. Nosova, Galina N. Lipunova, Ekaterina F. Zhilina, Pavel A. Slepukhin, Igor L. Nikonov and Valery N. Charushin

Contents

1.	NMR and mass spectra of intermediates	2
2.	NMR and mass spectra of products 5 and 7	7
3.	UV/Vis, fluorescence excitation and fluorescence emission spectra of compound 5a-e, 7	s .24
4.	Aggregation-induced emission of compounds 5a-f, 7, 8	.33
5.	Fe ³⁺ cation detection of compounds 5a-d,f and 7	36
6.	Selected bond lengths and angles of compounds 5a,b, and 7	39
7.	References	.46

1. NMR and mass spectra of intermediates

Figure S1. NMR ¹H (a) in DMSO-d₆ and mass spectrum (EI) (b) of 3c.

b

Figure S2. NMR ¹H (a) in DMSO-d₆ and mass spectrum (EI) (b) of 3d.

4c

Figure S3. NMR ¹H (a) in DMSO-d₆ and mass spectrum (EI) (b) of 4c.

Figure S4. NMR 1 H (a) in DMSO-d₆ and mass spectrum (EI) (b) of 4d.

2. NMR and mass spectra of products 5 and 7

5a

Figure S5. NMR ¹H (a), ¹³C (b), in CDCl₃ and mass spectrum (EI) (c) of 5a.

5b

а

С

Figure S6. NMR 1 H (a), 13 C (b), in CDCI₃ and mass spectrum (EI) (c) of 5b.

Figure S7. NMR 1 H (a), 13 C (b), in CDCl₃ and mass spectrum (EI) (c) of 5c.

5d

Figure S8. NMR 1 H (a), 13 C (b), in CDCl₃ and mass spectrum (EI) (c) of 5d.

Line#:1 R.Time:5.555(Scan#:2203) MassPeaks:144 RawMode:Single 5.555(2203) BasePeak:647(357534) Фон.реж.:2.625(1031) Group 1 - Event 1

b

Figure S9. NMR 1 H (a) in CDCI₃ and mass spectrum (EI) (b) of 5e.

5f

С

Figure S10. NMR 1 H (a), 13 C (b), in CDCl₃ and mass spectrum (EI) (c) of 5f.

Line#:1 R.Time:3.863(Scan#:2259) MassPeaks:125 RawMode:Single 3.863(2259) BasePeak:547(5697238) Фон.реж.:None Group 1 - Event 1

Figure S11. NMR 1 H (a), 13 C (b), 19 F (c) in CDCl₃ and mass (d) spectra of 7.

а

Figure S12. NMR 1 H (a) in CDCl₃ and mass (d) spectra of 8.

3. UV/Vis, fluorescence excitation and fluorescence emission spectra of compounds 5a-e, 7

Figure S13. UV/Vis (1, 2), fluorescence excitation (3,4) and fluorescence emission (5, 6) spectra of **5a** in toluene (1, 3, 5) and MeCN (2, 4, 6) at room temperature.

Figure S14. Fluorescence emission spectrum of 5a in solid state at room temperature.

Figure S15. UV/Vis (1, 2), fluorescence excitation (3, 4) and fluorescence emission (5, 6) spectra of **5b** in toluene (1, 3, 5) and MeCN (2, 4, 6) at room temperature.

Figure S16. Fluorescence emission spectrum of 5b in solid state at room temperature.

Figure S17. UV/Vis (1, 2), fluorescence excitation (3, 4) and fluorescence emission (5, 6) spectra of **5c** in toluene (1, 3, 5) and MeCN (2, 4, 6) at room temperature.

Figure S18. Fluorescence emission spectrum of 5c in solid state at room temperature.

Figure S19. UV/Vis (1, 2), fluorescence excitation (3, 4) and fluorescence emission (5, 6) spectra of **5d** in toluene (1, 3, 5) and MeCN (2, 4, 6) at room temperature.

Figure S20. Fluorescence emission spectrum of 5d in solid state at room temperature.

Figure S21. UV/Vis (1, 2), fluorescence excitation (3, 4) and fluorescence emission (5, 6) spectra of **5e** in toluene (1, 3, 5) and MeCN (2, 4, 6) at room temperature.

Figure S22. Fluorescence emission spectrum of 5e in solid state at room temperature.

Figure S23. UV/Vis (1, 2), fluorescence excitation (3, 4) and fluorescence emission (5, 6) spectra of **5f** in toluene (1, 3, 5) and MeCN (2, 4, 6) at room temperature.

Figure S24. Fluorescence emission spectrum of 5f in solid state at room temperature.

Figure S25. UV/Vis (1, 2), fluorescence excitation (3, 4) and fluorescence emission (5, 6) spectra of **7** in toluene (1, 3, 5) and MeCN (2, 4, 6) at room temperature.

Figure S26. Fluorescence emission spectrum of 7 in solid state at room temperature.

Figure S27. UV/Vis (1, 2), fluorescence excitation (3, 4) and fluorescence emission (5, 6) spectra of **8** in toluene (1, 3, 5) and MeCN (2, 4, 6) at room temperature.

Figure S28. Fluorescence emission spectrum of 8 in solid state at room temperature.

Table S1.

Optical properties of compounds **5a-f**, **7**, **8** in solid state (powder).

Compound	Emission,	Φ _F ^a , %
5a	493	3.0
5b	506	< 1
5c	476	4.2
5d	501	2.3
5e	508	1.6
5f	512	< 1
7	568	< 1
8	521	3.8

^aQuantum yield in solid state was measured by the integrated sphere method.

4. Aggregation-induced emission of compounds 5a-f, 7, 8

Figure S29. (a) Fluorescence spectra of 10 μ M **5a** in the MeCN/H₂O mixtures with different water fractions (*f*_w). (b) Plot of the I/I₀ at 480 nm versus the composition of the MeCN/H₂O mixture for **5a** (E_{ex} = 378 nm).

Figure S30. (a) Fluorescence spectra of 10 μ M **5b** in the MeCN/H₂O mixtures with different water fractions (*f*_w). (b) Plot of the I/I₀ at 485 nm versus the composition of the MeCN/H₂O mixture for **5b** (E_{ex} = 385 nm).

Figure S31. (a) Fluorescence spectra of 10 μ M **5c** in the MeCN/H₂O mixtures with different water fractions (*f*_w). (b) Plot of the I/I₀ at 475 nm versus the composition of the MeCN/H₂O mixture for **5c** (E_{ex} = 385 nm).

Figure S32. (a) Fluorescence spectra of 10 μ M **5d** in the MeCN/H₂O mixtures with different water fractions (*f*_w). (b) Plot of the I/I₀ at 485 nm versus the composition of the MeCN/H₂O mixture for **5d** (E_{ex} = 390 nm).

Figure S33. (a) Fluorescence spectra of 10 μ M **7** in the MeCN/H₂O mixtures with different water fractions (*f*_w). (b) Plot of the I/I₀ at 540 nm versus the composition of the MeCN/H₂O mixture for **7** (E_{ex} = 350 nm).

Figure S34. (a) Fluorescence spectra of 10 μ M **8** in the MeCN/H₂O mixtures with different water fractions (f_w). (b) Plot of the I/I₀ at 510 nm versus the composition of the MeCN/H₂O mixture for **8** (E_{ex} = 388 nm).

5. Fe³⁺ cation detection of compounds 5a-d,f and 7

Figure S35. Fluorescence emission spectra ($\lambda ex = 380$ nm) of **5a** acetone solvent with different concentration of Fe³⁺.

Figure S36. Fluorescence emission spectra ($\lambda ex = 387 \text{ nm}$) of **5b** acetone solvent with different concentration of Fe³⁺.

Figure S37. Fluorescence emission spectra ($\lambda ex = 385$ nm) of **5c** acetone solvent with different concentration of Fe³⁺.

Figure S38. Fluorescence emission spectra ($\lambda ex = 396$ nm) of **5d** acetone solvent with different concentration of Fe³⁺.

Figure S39. Fluorescence emission spectra ($\lambda ex = 390$ nm) of **5f** acetone solvent with different concentration of Fe³⁺.

6. Selected bond lengths and angles of compounds 5a,b, and 7

Table S2

Selected bond lengths of compound **5a**.

Bond	Bond length (Å)	Bond	Bond length (Å)
S(1)-C(13)	1.715(4)	C(10)-C(16)	1.487(5)
S(1)-C(14)	1.722(4)	C(11)-C(14)	1.363(5)
N(1)-C(15)	1.303(4)	C(11)-C(12)	1.428(5)
N(1)-C(1)	1.377(5)	C(12)-C(13)	1.346(5)
O(1)-C(7)	1.211(4)	C(14)-C(15)	1.429(5)
C(1)-C(2)	1.398(5)	C(16)-C(21)	1.379(5)
C(1)-C(6)	1.402(5)	C(16)-C(17)	1.390(5)
N(2)-C(15)	1.422(4)	C(17)-C(18)	1.371(6)
N(2)-C(9)	1.434(4)	C(18)-C(19)	1.382(6)
N(2)-C(7)	1.448(5)	C(19)-C(20)	1.359(6)
C(2)-C(3)	1.370(6)	C(20)-C(21)	1.375(5)
C(3)-C(4)	1.396(6)	C(22)-C(23)	1.383(5)
C(4)-C(5)	1.368(5)	C(22)-C(27)	1.386(5)
C(5)-C(6)	1.396(5)	C(23)-C(24)	1.385(5)
C(6)-C(7)	1.459(5)	C(24)-C(25)	1.366(6)
C(9)-C(10)	1.352(5)	C(25)-C(26)	1.380(6)
C(9)-C(22)	1.496(5)	C(26)-C(27)	1.377(5)
C(10)-C(11)	1.446(5)		

Selected bond angles of compound 5a.

Angle	(°)	Angle	(°)
C(13)-S(1)-C(14)	90.48(19)	C(12)-C(11)-C(10)	129.2(3)
C(15)-N(1)-C(1)	118.4(3)	C(13)-C(12)-C(11)	112.4(4)
N(1)-C(1)-C(2)	119.4(3)	C(12)-C(14)-S(1)	113.0(3)
N(1)-C(1)-C(6)	121.7(3)	C(11)-C(14)-C(15)	123.8(3)
C(2)-C(1)-C(6)	118.9(4)	C(11)-C(14)-S(1)	112.6(3)
C(15)-N(2)-C(9)	121.1(3)	C(15)-C(14)-S(1)	123.6(3)
C(15)-N(2)-C(7)	117.6(3)	N(1)-C(15)-N(2)	125.4(3)
C(9)-N(2)-C(7)	121.0(3)	N(1)-C(15)-C(14)	119.3(3)
C(3)-C(2)-C(1)	120.0(4)	N(2)-C(15)-C(14)	115.2(3)
C(2)-C(3)-C(4)	120.8(4)	C(21)-C(16)-C(17)	118.4(4)
C(5)-C(4)-C(3)	120.0(4)	C(21)-C(16)-C(10)	120.0(3)
C(4)-C(5)-C(6)	119.9(4)	C(17)-C(16)-C(10)	121.5(3)
C(5)-C(6)-C(1)	120.3(4)	C(18)-C(17)-C(16)	120.3(4)
C(5)-C(6)-C(7)	119.3(3)	C(17)-C(18)-C(19)	120.1(4)
C(1)-C(6)-C(7)	120.4(3)	C(20)-C(19)-C(18)	120.2(4)
O(1)-C(7)-N(2)	121.0(3)	C(19)-C(20)-C(21)	119.9(4)
O(1)-C(7)-C(6)	124.5(4)	C(20)-C(21)-C(16)	121.1(4)
N(2)-C(7)-C(6)	114.6(3)	C(23)-C(22)-C(27)	118.2(3) .
C(10)-C(9)-N(2)	120.9(3)	C(23)-C(22)-C(9)	121.8(3)
C(10)-C(9)-C(22)	119.7(3)	C(27)-C(22)-C(9)	119.8(3)
N(2)-C(9)-C(22)	119.3(3)	C(22)-C(23)-C(24)	120.8(4)
C(9)-C(10)-C(11)	119.4(3)	C(25)-C(24)-C(23)	119.9(4)
C(9)-C(10)-C(16)	123.8(3)	C(24)-C(25)-C(26)	120.3(4)
C(11)-C(10)-C(16)	116.7(3)	C(27)-C(26)-C(25)	119.5(4)

C(14)-C(11)-C(12)	111.5(3)	C(26)-C(27)-C(22)	121.2(4)
C(14)-C(11)-C(10)	119.3(3)		

Selected bond lengths of compound **5b**.

Bond	Bond length (Å)	Bond	Bond length (Å)
Br(1)-C(2)	1.878(7)	C(13)-C(12)	1.413(9)
S(1)-C(2)	1.719(7)	C(22)-C(27)	1.386(6)
S(1)-C(15)	1.728(6)	C(22)-C(23)	1.390(8)
O(1)-C(7)	1.208(8)	C(4)-C(3)	1.433(9)
C(1)-C(3)	1.353(9)	C(4)-C(5)	1.454(8)
N(2)-C(14)	1.403(7)	C(27)-C(26)	1.385(8)
N(2)-C(6)	1.444(8)	C(26)-C(25)	1.369(8)
N(2)-C(7)	1.431(8)	C(24)-C(23)	1.38(1)
N(1)-C(14)	1.315(7)	C(24)-C(25)	1.354(7)
N(1)-C(13)	1.375(8)	C(8)-C(7)	1.468(9)
C(15)-C(14)	1.419(8)	C(8)-C(9)	1.39(1)
C(15)-C(4)	1.371(8)	C(17)-C(18)	1.41(1)
C(16)-C(5)	1.466(9)	C(21)-C(20)	1.37(1)
C(16)-C(17)	1.379(8)	C(12)-C(11)	1.37(1)
C(16)-C(21)	1.414(8)	C(9)-C(10)	1.35(1)
C(6)-C(22)	1.492(8)	C(18)-C(19)	1.364(9)
C(6)-C(5)	1.359(8)	C(20)-C(19)	1.37(1)
C(13)-C(8)	1.40(1)	C(10)-C(11)	1.37(1)

Selected bond angles of compound 5b.

Angle	(°)	Angle	(°)
C(2)-S(1)-C(15)	89.5(3)	C(15)-C(4)-C(5)	118.1(5)
Br(1)-C(2)-S(1)	118.9(3)	C(3)-C(4)-C(5)	129.6(5)
Br(1)-C(2)-C(3)	126.3(5)	C(22)-C(27)-C(26)	120.9(5)
S(1)-C(2)-C(3)	114.8(5)	C(27)-C(26)-C(25)	119.1(5)
C(14)-N(2)-C(6)	121.2(4)	C(2)-C(3)-C(4)	110.6(5)
C(14)-N(2)-C(7)	118.5(4	C(23)-C(24)-C(25)	120.5(6)
C(6)-N(2)-C(7)	120.0(4)	C(22)-C(23)-C(24)	120.3(6)
C(14)-N(1)-C(13)	117.6(5)	C(16)-C(5)-C(6)	122.1(5)
S(1)-C(15)-C(14)	122.6(4)	C(16)-C(5)-C(4)	118.5(5)
S(1)-C(15)-C(4)	112.8(4)	C(6)-C(5)-C(4)	119.3(5)
C(14)-C(15)-C(4)	124.6(5)	C(13)-C(8)-C(7)	119.1(6)
C(5)-C(16)-C(17)	121.0(5)	C(13)-C(8)-C(9)	119.5(6)
C(5)-C(16)-C(21)	122.0(5)	C(7)-C(8)-C(9)	121.3(6)
C(17)-C(16)-C(21)	117.0(5)	C(16)-C(17)-C(18)	121.4(6)
N(2)-C(14)-N(1)	125.0(4)	C(16)-C(21)-C(20)	121.2(6)
N(2)-C(14)-C(15)	115.5(4)	C(13)-C(12)-C(11)	120.3(6)
N(1)-C(14)-C(15)	119.5(5)	O(1)-C(7)-N(2)	122.2(5)
N(2)-C(6)-C(22)	119.8(5)	O(1)-C(7)-C(8)	123.0(6)
N(2)-C(6)-C(5)	120.6(5)	N(2)-C(7)-C(8)	114.7(5)
C(22)-C(6)-C(5)	119.5(5)	C(8)-C(9)-C(10)	120.5(6)
N(1)-C(13)-C(8)	122.9(5)	C(17)-C(18)-C(19)	119.5(6)
N(1)-C(13)-C(12)	118.5(5)	C(26)-C(25)-C(24)	120.9(6)
C(8)-C(13)-C(12)	118.6(5)	C(21)-C(20)-C(19)	120.5(6)
C(6)-C(22)-C(27)	118.5(5)	C(9)-C(10)-C(11)	121.2(7)

C(6)-C(22)-C(23)	123.2(5)	C(12)-C(11)-C(10)	119.9(7)
C(27)-C(22)-C(23)	118.2(5)	C(18)-C(19)-C(20)	120.4(7)
C(15)-C(4)-C(3)	112.2(5)		

Selected bond lengths of compound 7.

Bond	Bond length (Å)	Bond	Bond length (Å)
F(1)-C(8)	1.305(7)	C(11)-C(18)	1.394(5)
F(2)-C(8)	1.308(6)	C(12)-C(31)	1.495(6)
F(3)-C(8)	1.313(8)	C(13)-C(23)	1.367(5)
F(4)-C(12)	1.299(7)	C(13)-C(27)	1.389(5)
F(5)-C(12)	1.300(6)	C(14)-C(15)	1.507(5)
F(6)-C(12)	1.335(7)	C(15)-C(25)	1.362(5)
N(1)-C(14)	1.397(4)	C(15)-C(36)	1.367(5)
N(1)-C(3)	1.414(4)	C(16)-C(39)	1.375(5)
N(1)-C(11)	1.433(5)	C(16)-C(28)	1.387(5)
N(2)-C(3)	1.314(4)	C(17)-C(21)	1.398(5)
N(2)-C(6)	1.379(4)	C(18)-C(30)	1.390(6)
O(1)-C(24)	1.180(5)	C(18)-C(24)	1.487(6)
O(2)-C(24)	1.369(4)	C(19)-C(45)	1.365(5)
O(2)-C(31)	1.410(5)	C(20)-C(21)	1.360(6)
C(31)-H(31A)	0.9800	C(22)-C(33)	1.373(7)
C(1)-C(19)	1.348(6)	C(23)-C(32)	1.370(5)
C(1)-C(2)	1.402(7)	C(25)-C(43)	1.375(6)
C(2)-C(40)	1.369(8)	C(27)-C(35)	1.376(6)
C(3)-C(5)	1.409(5)	C(28)-C(34)	1.388(5)
C(4)-C(20)	1.407(6)	C(29)-C(44)	1.330(7)

C(4)-C(7)	1.424(5)	C(29)-C(36)	1.382(6)
C(4)-C(5)	1.425(5)	C(30)-C(37)	1.371(6)
C(5)-C(10)	1.425(5)	C(32)-C(41)	1.350(6)
C(6)-C(7)	1.360(6)	C(33)-C(37)	1.366(6)
C(6)-C(19)	1.491(5)	C(34)-C(42)	1.343(6)
C(7)-C(16)	1.514(5)	C(35)-C(41)	1.375(6)
C(8)-C(31)	1.509(6)	C(38)-C(42)	1.374(6)
C(9)-C(14)	1.334(5)	C(38)-C(39)	1.392(5)
C(9)-C(10)	1.460(5)	C(40)-C(26)	1.326(7)
C(9)-C(13)	1.488(5)	C(43)-C(44)	1.346(7)
C(10)-C(17)	1.386(6)	C(45)-C(26)	1.372(7)
C(11)-C(22)	1.375(6)		

Selected bond angles of compound 7.

Angle	(°)	Angle	(°)
C(14)-N(1)-C(3)	120.5(3)	C(9)-C(14)-N(1)	122.8(3)
C(14)-N(1)-C(11)	121.3(3)	C(9)-C(14)-C(15)	122.3(3)
C(13)-N(1)-C(11)	117.8(3)	N(1)-C(14)-C(15)	114.8(4)
C(3)-N(2)-C(6)	117.0(4)	C(25)-C(15)-C(36)	118.1(4)
C(24)-O(2)-C(31)	116.6(4)	C(25)-C(15)-C(14)	119.7(3)
C(19)-C(1)-C(2)	119.8(5)	C(36)-C(15)-C(14)	122.2(4)
C(40)-C(2)-C(1)	120.2(6)	C(39)-C(16)-C(28)	117.7(3)
N(2)-C(3)-C(5)	124.9(3)	C(39)-C(16)-C(7)	122.7(3)
N(2)-C(3)-N(1)	117.1(4)	C(28)-C(16)-C(7)	119.6(3)
C(5)-C(3)-N(1)	118.0(3)	C(10)-C(17)-C(21)	119.5(4)
C(20)-C(4)-C(7)	125.8(3)	C(30)-C(18)-C(11)	118.4(4)

C(20)-C(4)-C(5)	116.7(4)	C(30)-C(18)-C(24)	121.4(4)
C(7)-C(4)-C(5)	117.5(4)	C(11)-C(18)-C(24)	120.2(4)
C(3)-C(5)-C(4)	117.5(3)	C(1)-C(19)-C(45)	119.0(4)
C(3)-C(5)-C(10)	121.2(3)	C(1)-C(19)-C(6)	120.2(4)
C(4)-C(5)-C(10)	121.2(4)	C(45)-C(19)-C(6)	120.8(4)
C(7)-C(6)-N(2)	123.9(3)	C(21)-C(20)-C(4)	121.9(4)
C(7)-C(6)-C(19)	122.5(3)	C(20)-C(21)-C(17)	121.7(5)
N(2)-C(6)-C(19)	113.6(4)	C(33)-C(22)-C(11)	120.9(5)
C(6)-C(7)-C(4)	119.1(3)	C(13)-C(23)-C(32)	121.9(4)
C(6)-C(7)-C(16)	121.0(3)	O(1)-C(24)-O(2)	122.2(5)
C(4)-C(7)-C(16)	119.6(4)	O(1)-C(24)-C(18)	127.2(4)
F(1)-C(8)-F(2)	108.1(6)	O(2)-C(24)-C(18)	110.6(4)
F(1)-C(8)-F(3)	107.9(5)	C(15)-C(25)-C(43)	120.4(4)
F(2)-C(8)-F(3)	108.1(6)	C(35)-C(27)-C(13)	120.8(4)
F(1)-C(8)-C(31)	111.0(6)	C(16)-C(28)-C(34)	120.2(4)
F(2)-C(8)-C(31)	109.8(5)	C(44)-C(29)-C(36)	121.8(5)
F(3)-C(8)-C(31)	111.9(5)	C(37)-C(30)-C(18)	121.2(5)
C(14)-C(9)-C(10)	119.5(3)	O(2)-C(31)-C(12)	109.1(4)
C(14)-C(9)-C(13)	121.2(3)	O(2)-C(31)-C(8)	107.0(4)
C(10)-C(9)-C(13)	119.3(4)	C(12)-C(31)-C(8)	114.7(5)
C(17)-C(10)-C(5)	119.1(3)	C(41)-C(32)-C(23)	120.6(5)
C(17)-C(10)-C(9)	123.0(4)	C(37)-C(33)-C(22)	120.0(5)
C(5)-C(10)-C(9)	117.9(4)	C(42)-C(34)-C(28)	121.6(4)
C(22)-C(11)-C(18)	119.7(4)	C(41)-C(35)-C(27)	120.2(4)
C(22)-C(11)-N(1)	117.9(4)	C(15)-C(36)-C(29)	119.8(4)
C(18)-C(11)-N(1)	122.3(4)	C(33)-C(37)-C(30)	119.9(5)
F(4)-C(12)-F(5)	107.3(6)	C(42)-C(38)-C(39)	119.9(4)

F(4)-C(12)-F(6)	104.9(5)	C(16)-C(39)-C(38)	121.3(4)
F(5)-C(12)-F(6)	107.2(6)	C(26)-C(40)-C(2)	118.7(6)
F(4)-C(12)-C(31)	113.9(6)	C(32)-C(41)-C(35)	119.3(4)
F(5)-C(12)-C(31)	112.0(5)	C(34)-C(42)-C(38)	119.3(4)
F(6)-C(12)-C(31)	111.0(5)	C(44)-C(43)-C(25)	121.2(5)
C(23)-C(13)-C(27)	117.3(4)	C(29)-C(44)-C(43)	118.6(5)
C(23)-C(13)-C(9)	121.0(3)	C(19)-C(45)-C(26)	120.4(5)
C(27)-C(13)-C(9)	121.7(4)	C(40)-C(26)-C(45)	121.8(6)

7. References

- 1. Borisevich NA, Zelinsky V V., Neporent BS. *Reports USSR Acad Sci.* 1954; XCIV: 37–39.
- 2. Dolomanov OV., Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. *J Appl Crystallogr*. 2009; 42: 339–341.
- 3. Sheldrick GM. Acta Crystallogr Sect A Found Crystallogr. 2008; 64: 112–122.
- 4. Abdel-Jalil RJ, Voelter W, Saeed M. *Tetrahedron Lett.* 2004; 45: 3475–3476.
- 5. Nosova EV., Moshkina TN, Lipunova GN, Baklanova IV., Kopchuk DS, Slepukhin PA, Charushin VN. *Mendeleev Commun.* 2018; 28: 14–16.
- 6. Layeva AA, Nosova EV., Lipunova GN, Trashakhova T V., Charushin VN. *Russ Chem Bull.* 2007; 56: 1821–1827.
- 7. Qi Z, Tang GD, Pan CL, Li X. Org Biomol Chem. 2015; 13: 10977–10980.
- 8. Kumaran S, Parthasarathy K. *European J Org Chem.* 2020; 2020: 866–869.