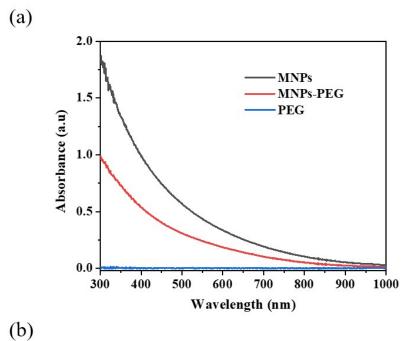
Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information *for*


Melanin Nanoparticles as an Actinide in vivo Sequestration Agent with Radiation Protection Effect

Yu Miao,^{‡ab} Jie Sheng,^{‡b} Xiaomei Wang,^{‡b} Cen Shi,^b Qiwen Sun,^b Tonghuan Liu*a and Juan Diwu*^b

- ^{a.} Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- b. State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China

^{*}Corresponding authors. Email: liuth@lzu.edu.cn; diwujuan@suda.edu.cn

S1. UV-vis spectrum

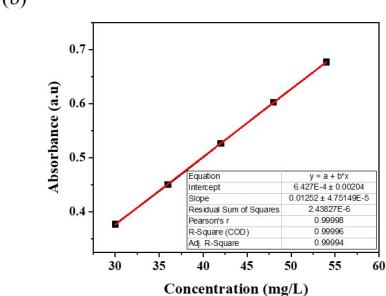


Figure S1. (a) UV-vis-NIR absorption spectra of MNPs (60 ppm), MNPs-PEG (60 ppm) and PEG (1000 ppm). (b) Absorbance of different concentrations of MNPs at 450 nm.

S2. Zeta potential

Table S1. Zeta potential of MNPs and MNPs-PEG.

	Zeta potential (mV)
MNPs	-24.0 ± 1.1
MNPs-PEG	-18.4 ± 1.5

S3. Adsorption selectivity

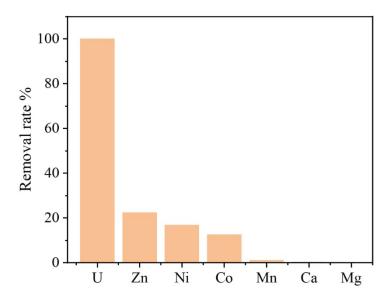


Figure S2. Adsorption behavior of MNPs-PEG towards uranium and divalent essential metal ions (pH = 7.4, 50 mmol/L Tris-HCl buffer, m/V = 0.3 g/L, T = 310 K, the initial concentration of uranium is 2.4 ppm, and the initial concentration of interfering ions are about 40 ppm).

S4. Cytotoxicity assays.

Table S2. Dosage-dependent growth rate of NRK-52E cells treated with $UO_2(NO_3)_2 \cdot 6H_2O$, values were presented as means \pm SD (n=4). (Data from reference 1)

Concentration of uranium (µg/mL)	Survival Rate (%)
1.48	96.7 ± 4.3
2.95	90.9 ± 0.1
5.90	71.2 ± 1.3
11.80	68.5 ± 1.9
21.23	63.3 ± 1.8

Table S3. Dosage-dependent growth rate of AML-12 cells treated with $Th(NO_3)_4 \cdot 6H_2O$, values were presented as means \pm SD (n = 6).

Concentration of thorium (µg/mL)	Survival Rate (%)
3.7	100.4 ± 3.2
7.4	94.4 ± 2.0
14.8	95.7 ± 4.8
29.7	89.4 ± 5.1
59.3	88.5 ± 4.3
118.7	74.7 ± 2.2

S5. ROS level assays.

Table S4. ROS level of normal NRK-52E cells and NRK-52E cells treated with U(VI), U(VI) + DTPA, and U(VI) + MNPs-PEG, values were presented as means \pm SD (n=3).

Group	ROS
Normal	131.0 ± 8.0
U(VI)	272.7 ± 51.2
U(VI) + DTPA	232.0 ± 23.5
U(VI) + MNPs-PEG	133.3 ± 13.2

Table S5. ROS level of normal AML-12 cells and AML-12 cells treated with Th(IV), Th(IV) + DTPA, and Th(IV) + MNPs-PEG, values were presented as means \pm SD (n=3).

Group	ROS
Normal	2.3 ± 1.7
Th(IV)	8.3 ± 0.9
Th(IV) + DTPA	5.7 ± 0.8
Th(IV) + MNPs-PEG	2.3 ± 0.5

Reference

(1) C. Shi, X. Wang, J. Wan, D. Zhang, X. Yi, Z. Bai, K. Yang, J. Diwu, Z. Chai, and S. Wang *Bioconjugate Chem.*, 2018, 29, 3896-3905.