Supporting Information

Highly Efficient Photocatalytic CO₂ Reduction by a Ruthenium

Complex Sensitizing g-C₃N₄/MOF Hybrid Photocatalyst

Wenxuan Sun, Xuyang Chen, Xiangfen Meng and Yan Gao*

State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT),

Dalian 116024, China. *Corresponding author.

E-mail address: dr.gaoyan@dlut.edu.cn

Experimental section

Materials

Chemical reagents were purchased from Aladdin or Sigma-Aldrich and used without further purification: $RuCl_3 \cdot 3H_2O$, LiCl, $Co(NO_3)_2 \cdot 6H_2O$, $RuCl_3 \cdot 3H_2O$, 2,2-bipyridyl (bpy), KPF₆, urea, NaHCO₃, 2,5-Dihydroxyterephthalic acid (H₄DOBDC), 2,2'-bipyridyl-4,4'-dicarboxylic acid (H₂dcbpy), Tetrabutylammonium hexafluorophosphate (NBu₄PF₆), ethanol, methanol, acetic acid, deionized water, acetonitrile (MeCN), N,N-dimethylformaide (DMF), and triethanolamine (TEOA).

Preparation of ruthenium complexes (RuL₂L')

The $[Ru^{II}(bpy)_2(H_2dcbpy)](PF_6)_2$ complex was synthesized according to the reported^[1].

Synthesis of exfoliated g-C₃N₄

The exfoliated g-C₃N₄ was prepared according to the literature^[2].

Preparation of g-C₃N₄/MOF

Different amount g-C₃N₄ samples (100 mg, 200 mg and 400 mg) were ultrasound treated in 10 mL DMF for 30 min. And the solid mixture of H₄DOBDC (40 mg, 0.2 mmol) and Co(NO₃)₂·6H₂O (233 mg, 0.8 mmol) were dissolved in a 20 mL solution that consisted of DMF, water and EtOH at a volume ratio of 2:1:1, which was ultrasound to form a homogeneous solution. Then the solution of g-C₃N₄ was added slowly to the mixed solution under ultrasound. Subsequently, the mixed solution was

transferred into 50 mL Telflonlined autoclave and treated in an oven at 120 °C for 24 h. The resultant suspension was filtered and washed with H_2O , DMF, and EtOH and finally dried at 100 °C for 6 h in a vacuum desiccator.

Preparation of RuL₂L'@C₃N₄/MOF

The g-C₃N₄/MOF complex was dispersed in 20 mL DMF, the same amount of RuL₂L' as g-C₃N₄ added into the solution (Table. S1). The suspension was stirred at room temperature in the dark overnight^[3]. Here, the obtained samples RuL₂L'@xC₃N₄/MOF containing 100, 200 and 400 mg C₃N₄ named RuL₂L'@100C₃N₄/MOF, RuL₂L'@200C₃N₄/MOF and RuL₂L'@400C₃N₄/MOF, respectively.

Characterizations

Crystal phase structures were conducted via a powder X-ray diffraction (XRD, SmartLab 9KW), the morphology and microstructure of all samples were analyzed by scanning electron microscopy (SEM, Bruker Smart APEX II) and transmission electron microscopy (TEM, Tecnai G2 F30). The chemical states on the surface of photocatalysis were measured by X-ray photoelectron spectroscopy (XPS, ESCALAB XI+). The photoluminescence (PL) spectra were recorded on the steady-state spectrophotometer (HORIBA Jobin Yvon FluoroMax-4). Solid-state UV–vis diffuse absorption spectra were obtained with Lambda 750S spectrophotometer. The infrared spectra were obtained using a Fourier transform infrared (FT-IR) spectrometer (Bruker VERTEX 80v).

Photocatalytic Performance Test

Typically, a mixture of 1 mg RuL₂L'@C₃N₄/MOF, 1 mg bpy, proper amount of TEOA as electronic donor and 4 mL MeCN was placed in the Schlenk cube (25 mL). And the mixture degassed by CO₂ for half an hour. After the CO₂ was saturated, the solution was irradiated by the 300W Xe almp equipped with a 400 nm cutoff filter. The generated gas was analyzed by gas chromatograph (GC-7900) every half hour.

Mott-Schottky, transient photocurrent responses and electrochemical impedance spectroscopy (EIS)

The sample (3 mg) was dissolved in 1 mL H₂O/EtOH = 3:1 and ultrasound for 30 minutes. Then 80 μ L nafion added in the mixture solution and ultrasound for 30 minutes. The preparation for working electrode was that 0.1 mL slurry was dropped onto FTO and dried at 40 °C for 10 minutes. The solution purged with Ar before

electrochemistry test. The reference electrode and counter electrode were Ag/AgCl electrode and Pt electrode, respectively. A solution of 0.5 M Na₂SO₄ served as electrolyte solution for Mott-Schottky, transient photocurrent responses and EIS measurements.

Cyclic Voltammogram (CV) tests

1 mM RuL₂L' was dissolved in 30 mL CH₃CN with 0.1 M NBu₄PF₆. CV was tested in a standard three-electrode cell. The reference electrode, counter electrode and working electrode were saturated Ag/AgNO₃, Pt electrode and glassy carbon electrode, respectively.

References

 P. Pearson, A. M. Bond, G. B. Deacon, C. Forsyth and L. Spiccia, *Inorg. Chim. Acta*, 2008, **361**, 601-612.

2. J. Xu, L. Zhang, R. Shi and Y. Zhu, J. of Mat. Chem. A, Mat. for En. and Sustain., 2013, 1, 14766.

3. R. Kuriki, M. Yamamoto, K. Higuchi, Y. Yamamoto, M. Akatsuka, D. Lu, S. Yagi, T. Yoshida, O. Ishitani and K. Maeda, *Angew. Chem. Int. Ed. Engl*, 2017, **56**, 4867-4871.

number	g-C ₃ N ₄	RuL ₂ L'	Co ²⁺	H ₄ DOBDC	named
1	100 mg	100 mg	233 mg	40 mg	RuL ₂ L'@100C ₃ N ₄ -
1	Too mg	100 mg	255 116		MOF
2	200 mg	200 mg	233 mg	233 mg 40 mg	$RuL_{2}L'@200C_{3}N_{4}-$
_	8		8		MOF
4	400 mg	400 mg	233 mg	40 mg	RuL ₂ L'@400C ₃ N ₄ -
					MOF

Tab. S1. Synthesis of different content of $RuL_2L'@xC_3N_4/MOF$

Fig. S1. XRD of bulk $g-C_3N_4$ and exfoliated $g-C_3N_4$.

Fig. S2. TEM image of exfoliated $g-C_3N_4$.

Fig. S3. SEM image of exfoliated g-C₃N₄.

Fig. S4. SEM image of Co-MOF-74.

Fig. S5. SEM image of $RuL_2L'@200C_3N_4/MOF$

Fig. S6. (a-c) Elemental mapping and (d) EDS of $RuL_2L'@200C_3N_4/MOF$ composite photocatalysts

Fig. S7. XPS spectra of the $RuL_2L'@200C_3N_4/MOF$: N 1s (a) and O 1s (b)

Sample	$S_{BET}/m^2 {\scriptstyle \bullet } g^{\text{-}1}$	$V_{pore}/cm^3 \cdot g^{-1}$	d _{pore} /nm
g-C ₃ N ₄	4.8	0.025	18.3
RuL ₂ L'@C ₃ N ₄ /MOF	50.9	0.23	21.0
Co-MOF-74	530.0	0.28	25.8

Tab. S2. Specific surface areas, pore volumes and pore diameters for $g-C_3N_4$, $RuL_2L'@C_3N_4/MOF$ and Co-MOF-74

Fig. S8. CO_2 adsorption isotherms of the RuL₂L'@200C₃N₄/MOF and g-C₃N₄/MOF.

Fig. S9. FT-IR (a) and XRD (b) patterns of $RuL_2L'@200C_3N_4/MOF$ before and after reaction

cycle times	content of RuL ₂ L'
1st	0.175
2th	0.098
3rd	0.054

Tab. S3. ICP-MS of the RuL₂L'@200C₃N₄/MOF after every cycle

Fig. S10. The photocatalysis of RuL₂L'@200C₃N₄/MOF and RuL₂L' (0.168 mg) + Co-MOF-74 1 mg under the same reaction conditions.

Tab. S4. The production of samples within 3 hours under the same conditions

Condition	CO production (µmol/g)	H_2 production (µmol/g)
g-C ₃ N ₄	3.9	trace
Co-MOF-74	10.8	trace
RuL_2L'	21.6	trace

Fig. S11. PL spectra of g-C₃N₄ and RuL₂L'@C₃N₄/MOF

Fig. S12. The Mott-Schottky plots of $g-C_3N_4$.

Fig. S13. The Mott-Schottky plots of Co-MOF-74.

Fig. S14. The band gap spectra of $g-C_3N_4$.

Fig. S15. The band gap spectra of Co-MOF-74.

Fig. S16. PL spectrum of RuL_2L' in g-C₃N₄/MOF

Fig. S17. PL spectrum of RuL_2L' with addition of TEOA (0, 100, 500 mM).

Fig. S18. The CV of RuL_2L' in CH_3CN with 0.1 M NBu_4PF_6 as supporting electrolyte under N_2 atmosphere.