α-MoC_{1-x} Nanorods as Efficient Hydrogen Evolution Reaction

Electrocatalyst

Punian Yin, ^{a, †} Huizhu Cai, ^{a, †} Xiao Zhang, ^a Bingbing Chen, ^a Yang Liu, ^a Rui Gao, **^{b, c, d} Chuan Shi, *^a

^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian

University of Technology, Dalian 116024, China.

^b State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese

Academy of Sciences, Post Office Box 165, Taiyuan, Shanxi 030001, China

^c Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing, China.

^d School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.

[†] These authors contributed equally to this work.

* Corresponding author.

E-mail addresses: chuanshi@dlut.edu.cn (Chuan Shi)

- ** Corresponding author.
- E-mail addresses: gaorui@imu.edu.cn (Rui Gao).

Figure S1 Schematic explanation of the synthetic procedure of the molybdenum carbide-based catalysts.

Figure S2 XRD patterns of MoO₃ and MoO₃ nanorods.

Figure S3 Scanning electron microscopy (SEM) images of MoO₃ nanorods.

Figure S4 Scanning electron microscopy (SEM) images of MoO₃.

Figure S5 XPS spectra for Mo 3d (a), C 1s (b) of α -MoC_{1-x} nanorods catalyst.

Figure S6 Cyclic voltammograms of α -MoC_{1-x}, β -Mo₂C and α -MoC_{1-x} nanorods with various scan rates in 0.5 M H₂SO₄.

Figure S7 Cyclic voltammograms of α -MoC_{1-x}, β -Mo₂C and α -MoC_{1-x} nanorods with various scan rates in 1.0 M KOH.

Figure S8 The TOF values of α -MoC_{1-x}, β -Mo₂C and α -MoC_{1-x} nanorods catalysts in (a) 0.5 M H₂SO₄ and (b) 1.0 M KOH solution.

Figure S9 The XRD patterns of α -MoC_{1-x} nanorods catalyst after stability tests for HER in (a) 0.5 M H₂SO₄ and (b) 1.0 M KOH solution.

Figure S10 The TEM images of α -MoC_{1-x} nanorods catalyst after stability tests for HER in (a) 0.5 M H₂SO₄ and (b) 1.0 M KOH solution.

Figure S11 H₂-Chemisorption profiles of α -MoC_{1-x} and β -Mo₂C.

Catalysts	j (mA/cm ²)	η (mV)	Tafel slope	Ref
Mo _x C-0.4	10	48	155	[1]
MoC@C	10	63.6	120	[2]
α -MoC _{1-x} / β -Mo ₂ C	10	78	242	[3]
α -MoC _{1-x} -MoP/C	10	57	173	[4]
α -MoC _{1-x} nanorods	10	60	127	This work

Table S1 Summary of representative α -MoC_{1-x} -based HER catalysts in 0.5 M H₂SO₄.

	Fresh sample	Used sample in 0.5 M	Used sample in 1.0 M	
		H_2SO_4	КОН	
Mo content (wt. %)	46.7	44.9	45.8	

Table S2 ICP results of α -MoC _{1-x} nanorods before and after durability tes	ts
--	----

Calculated Electrochemically Active Surface Area

 $A_{ECSA} = \frac{\text{electrochemical capacitance}}{40 \ \mu\text{F cm}^{-2} \ \text{per cm}_{ECSA}^{2}}$

Turnover Frequency Calculations

The turnover frequency can be calculated by the following formula:

TOF = $\frac{\text{no. of total hydrogen turnovers/ cm}^2 \text{ of geometric area}}{\text{no. of active sites/ cm}^2 \text{ of geometric area}}$

The total number of hydrogen turnovers per current density can be calculated by the formula:

No. of
$$H_2 = \left(per \frac{mA}{cm^2} \right) \left(\frac{1 \text{ C s}^{-1}}{1000 \text{ mA}} \right) \left(\frac{1 \text{ mol of } e}{96485.3 \text{ C}} \right) \left(\frac{1 \text{ mol of } H_2}{2 \text{ mol of } e} \right) \left(\frac{6.022 \times 10^{23} \text{H}_2 \text{ molecules}}{1 \text{ mol of } \text{H}_2} \right)$$

= $3.12 \times 10^{15} \frac{\text{H}_2 \text{ s}^{-1}}{\text{cm}^2} \text{per} \frac{\text{mA}}{\text{cm}^2}$

Active sites per real surface area:

For α -MoC_{1-x}

active sites =
$$\left(\frac{8 \text{ atoms/unit cell}}{77.8 \text{ Å}^3/\text{unit cell}}\right)^{\frac{2}{3}} = 2.19 \times 10^{15} \text{ atoms cm}_{\text{real}}^{-2}$$

For β -Mo₂C

active sites =
$$\left(\frac{2 \text{ atoms/unit cell}}{37.2 \text{ Å}^3/\text{unit cell}}\right)^{\frac{2}{3}} = 1.42 \times 10^{15} \text{ atoms cm}_{\text{real}}^{-2}$$

Finally, plot of current density can be converted into a TOF plot according to:

$$TOF = \frac{(3.12 \times 10^{15} \frac{\text{H}_2 \text{ s}^{-1}}{\text{cm}^2} \text{ per} \frac{\text{mA}}{\text{cm}^2}) \times |\mathbf{j}|}{(\text{active sites per real surface area}) \times \text{A}_{\text{ECSA}}}$$

References

- [1] X. Zhang, J. Wang, T. Guo, T. Liu, Z. Wu, L. Cavallo, Z. Cao, D. Wang, Structure and phase regulation in MoxC (α-MoC_{1-x}/β-Mo₂C) to enhance hydrogen evolution, *Appl. Catal. B: Environ.* 247 (2019) 78-85.
- [2] C. Lv, Z. Huang, Q. Yang, G. Wei, Z. Chen, M.G. Humphrey, C. Zhang, Ultrafast synthesis of molybdenum carbide nanoparticles for efficient hydrogen generation, *J. Mater. Chem. A* 5 (2017) 22805-22812.
- [3] T. Liu, X. Zhang, T. Guo, Z. Wu, D. Wang, Boosted hydrogen evolution from α-MoC_{1-x}-MoP/C heterostructures, *Electrochim. Acta* 334 (2020) 135624.
- [4] Z. Chen, T. Guo, Z. Wu, D. Wang, Boron triggers the phase transformation of MoxC (alpha-MoC_{1-x}/beta-Mo₂C) for enhanced hydrogen production, *Nanotechnology*, 31 (2019) 105707.