Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

SUPPORTING INFORMATION

Prussian blue as a co-catalyst for enhanced Cr(VI) photocatalytic reduction promoted by titaniabased nanoparticles and aerogels

Elias Paiva Ferreira-Neto^{a,b*}, Sajjad Ullah^{b,c,d} Amanda Pasquoto Perissinotto^a, Fábio S. de Vicente^e, Sidney José Lima Ribeiro^b, Marcus Andre Worsley^f, Ubirajara Pereira Rodrigues-Filho^{a*}

^aInstitute of Chemistry of São Carlos, University of São Paulo, 13560-970, São Carlos, SP, Brazil

^bInstitute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, SP, Brazil

°Institute of Chemical Sciences, University of Peshawar, PO Box 25120, Peshawar, Pakistan

^dInstitute of Physics, Federal University of Mato Grosso do Sul, 79070-900, Campo Grande, MS, Brazil

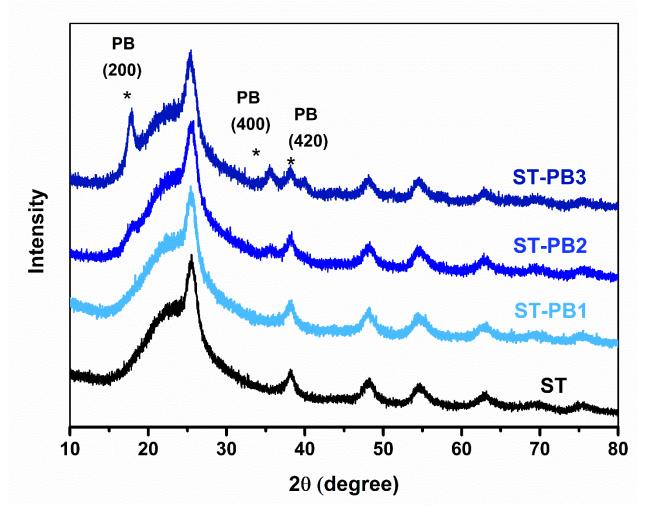
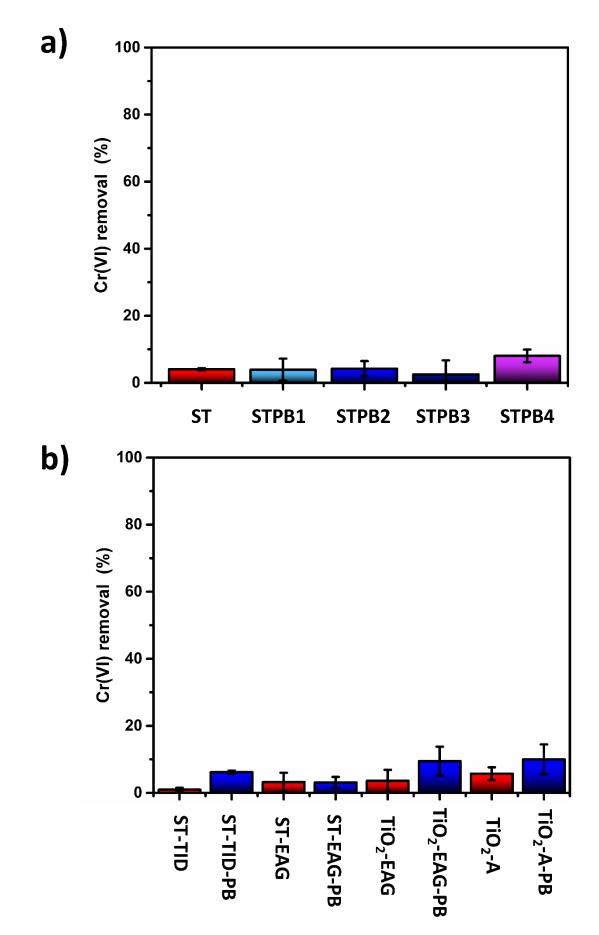
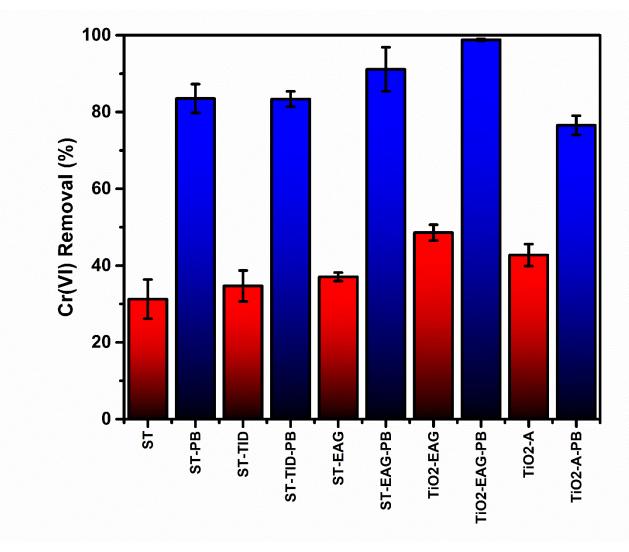
eInstitute of Geosciences and Exact Sciences, Department of Physics, São Paulo State University (UNESP), 13500-970, Rio Claro, SP, Brazil

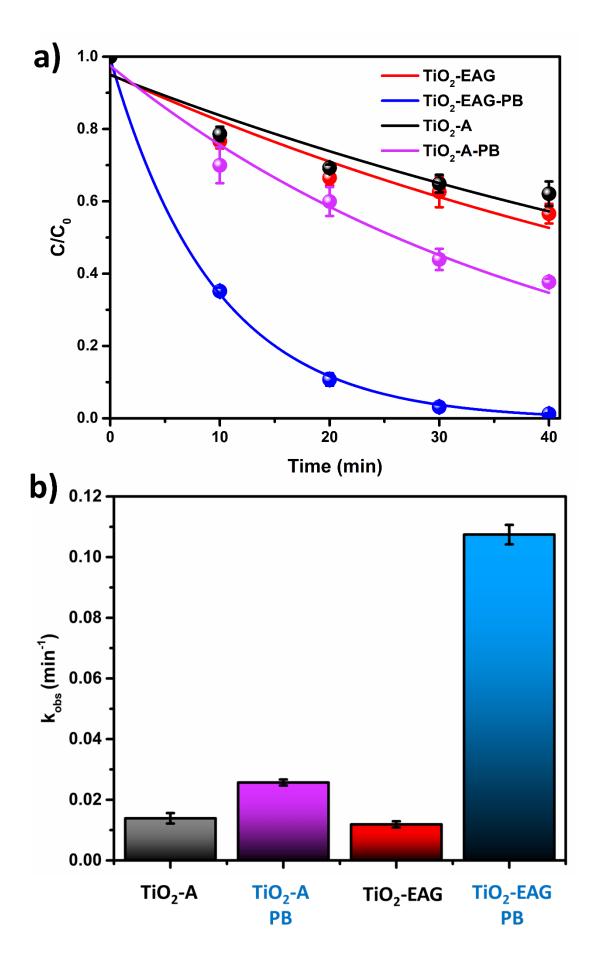
^fPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA

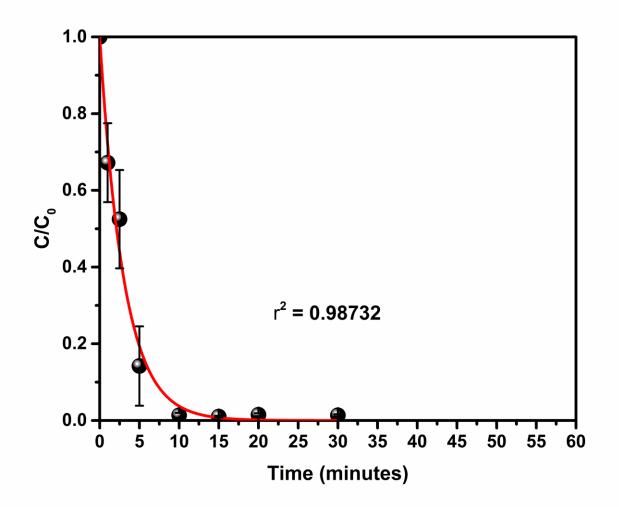
*Corresponding authors: <u>elias.p.ferreira@gmail.com</u> (E. P. Ferreira-Neto), <u>ubirajara@usp.br</u> (U. P. Rodrigues-Filho)

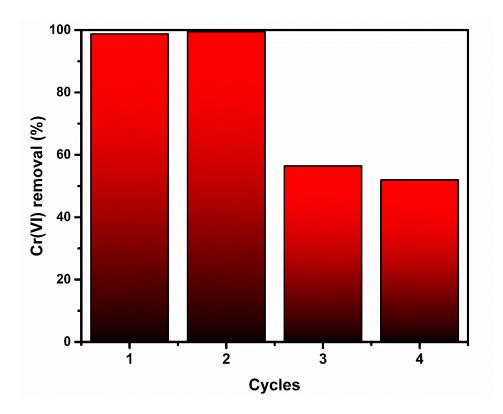
Reagent, Method or Sample	Abbreviation/Label
Titanium (IV) dioxide anatase	TiO ₂ -A
nanoparticles	
Titanium (IV) isopropoxide	TiP
Tetraethylortosilicate	TEOS
1,5-diphenyl carbazide	DPC
Propylene oxide	PO
N,N-dimethylformamide	DMF
Thermo-Induced Deposition	TID
Epoxide-Assisted Gelation	EAG
SiO ₂ @TiO ₂ core-shell particles	ST
SiO ₂ @TiO ₂ core@shell aerogel	ST-TID
prepared by thermo-induced deposition	
SiO ₂ /TiO ₂ composite aerogel prepared	ST-EAG
by Epoxide-Assited Gelation	
TiO ₂ aerogel prepared by Epoxide-	TiO ₂ -EAG
Assisted Gelation	
Prussian Blue Fe ₄ [Fe(CN) ₆] ₃	PB

Table S1. Summary of reagent and material samples abbreviations/labels


Figure S1. X-ray diffractograms of SiO₂@TiO₂ particles photocatalysts containing different PB loading


Figure S2. Comparison of Cr(VI) removal during initial adsorption step in the 30min kept under magnetic stirring in the dark for: a) unmodified $SiO_2@TiO_2$ and $SiO_2@TiO_2$ material modified with increasing PB loadings; b) Different unmodified and respective PB-modified TiO₂ and SiO₂/TiO₂ photocatalyst materials


Figure S3. Comparison of the Cr(VI) photoreduction efficiency after 60 min irradiation for different titania and silica-titania based photocatalysts with and without PB.

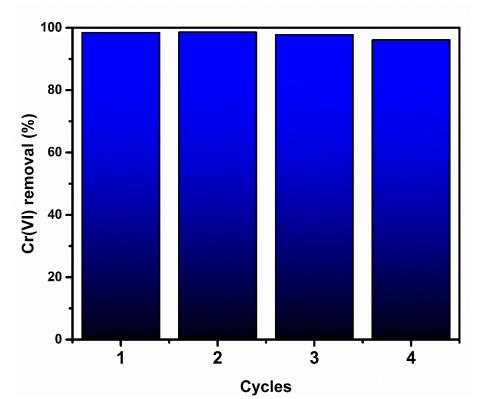

Figure S4. a) Fitted kinetic profiles and b) first order kinetic constants of Cr(VI) photocatalytic reduction assays for unmodified and PB modified anatase TiO₂ (TiO₂-A) or anatase/rutile TiO₂ samples (TiO₂-EAG-PB)

Figure S5. a) Fitted first-order kinetic profiles of Cr(VI) photocatalytic reduction experiment for TiO₂-EAG-PB sample in acidic media (pH=3) and with higher catalyst dosage (1g.L⁻¹)

Figure S6. Figure S8. Cr(VI) removal under unadjusted pH conditions (pH = 5.6) after repeated photocatalytic cycles using the same recycled photocatalyst (TiO₂-EAG-PB2, catalyst dosage = 0.5 g.L^{-1}). The photocatalyst, after exposure to UV light for 40 min, was recovered by centrifugation at 3500 rpm for 30 min and washed with 0.5 mol.L⁻¹ H₂SO₄ solution before being used in the next photocatalysis cycle.

Figure S7. Cr(VI) removal under acidic conditions (pH = 3) after repeated photocatalytic cycles using the same recycled photocatalyst (TiO₂-EAG-PB2, catalyst dosage = 1 g.L⁻¹). The photocatalyst, after exposure to UV light for 30 min, was recovered by centrifugation at 3500 rpm for 30 min and washed with 0.1 mol.L⁻¹ HNO₃ solution before being used in the next photocatalysis cycle.