Electronic Supplementary Information

PANI/MoO_{3-x} shell-core composites with enhanced rate and cycling performance for flexible solid-state supercapacitors and electrochromic applications

Yan Sui^{a, b}, Yongjun Ma^{a, b}, Yanyu Gao^{a, b}, Jia Song^{a, b}, Yuncheng Ye^{a, b}, Haijun Niu^{a, b}, Weijing Ma^a,

^b, Pengxue Zhang^{a, b} and Chuanli Qin^{*a, b}

^a School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China

^b Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of

Heilongjiang Province, Harbin, 150080, People's Republic of China

*Corresponding author.

E-mail: qinchuanli@hlju.edu.cn

Fig. S1 SEM images of (a) PANI/MoO_{3-x}-1 and (b)PANI/MoO_{3-x}-3.

Fig. S2 Raman spectra of samples.

	C=C	C=C	C-N	C=N	C-H	Mo=O	Мо-О-Мо	Мо-О-Мо
Samples	stretching	stretching	stretching	stretching	out-of-	symmetric	asymmetry	symmetry
	vibration	vibration	vibration	vibration	plane	stretching	stretching	stretching
	of	of	of	of	bending	vibration	vibration	vibration
	quinonoid	benzenoid	benzenoid	quinonoid	vibration			
	ring	ring	ring	ring	of			
					benzenoid			
					ring			
	1583	1494	1292	1156	822	994	858	575
MoO _{3-x}						\checkmark	\checkmark	\checkmark
PANI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
PANI/MoO _{3-x} -1	\checkmark							
PANI/MoO _{3-x} -2	\checkmark							
PANI/MoO _{3-x} -3	\checkmark							

Table S1FT-IR analyses of samples

Fig. S3 XPS survey spectra of samples.

Fig. S4 (a) N₂ absorption/desorption isotherms and (b) pore size distributions of samples.

_						
	Samples	S_{BET}^{a}	$V_{total}{}^{b}$	$V_{mec+mac}$ ^c	$D_{avg}{}^{d}$	
		(m^{2}/g)	(cm^{3} / g)	(cm^{3}/g)	(nm)	
	PANI	27.434	0.3244	0.320	47.2	
	PANI/MoO _{3-x} -1	25.609	0.2533	0.249	39.6	
	PANI/MoO _{3-x} -2	26.017	0.2608	0.256	40.1	
	PANI/MoO _{3-x} -3	23.150	0.2480	0.246	42.8	
	MoO _{3-x}	21.344	0.1726	0.171	32.3	

 Table S2
 The specific surface area and pore structure parameters of samples

^a Total specific surface area calculated by Brunaur-Emmett-Teller (BET) method.

^b Total pore volume calculated at $P/P_0 = 0.99$.

^c Meso-/Macropore volume calculated from BJH method.

 d Average pore diameter calculated from the equation of $4V_{t}\!/S_{BET.}$

Fig. S5 The contact angle images of samples.

Equivalent			Samples			
cırcuit						
elements	PANI	PANI/MoO _{3-x} -1	PANI/MoO _{3-x} -2	PANI/MoO _{3-x} -3	MoO _{3-x}	
$R_{ m s}\left(\Omega ight)$	1.472	1.049	1.018	1.385	1.083	
CPE_T	0.00231	0.00023	0.00019	0.00029	0.00041	
CPE_p	0.74116	1.002	0.78397	0.91366	0.94131	
$R_{ ext{ct}}\left(\Omega ight)$	1.743	1.776	1.704	1.982	1.875	
W_R	1.13	0.31872	0.25659	5.182	6.334	
W_T	0.00093	0.00052	0.00032	0.34182	13.21	
W_P	0.31133	0.30124	0.30549	0.36509	0.42363	

Table S3 Fitting values of equivalent circuit elements of samples.

 R_s is the solution resistance.

 CPE_T is the capacitance when $CPE_P=1$.

 CPE_P is the constant phase element exponent.

 R_{ct} is the charge transfer resistance.

 W_R is the diffusion resistance (Warburg diffusion resistance).

 W_T is the diffusion time constant.

 W_P is a fractional exponent between 0 and 1.

Fig. S6 Electrochromic performance of PANI/MoO_{3-x}-1: (a) UV-vis transmission spectra; (b) in situ optical response between the colored and bleached states from -0.2 to 0.8 V for 10 s at 732 nm; (c) the photos of color changes under different potentials.

Fig. S7 Electrochromic performance of PANI/MoO_{3-x}-3: (a) UV-vis transmission spectra; (b) in situ optical response between the colored and bleached states from -0.2 to 0.8 V for 10 s at 732 nm; (c) the photos of color changes under different potentials.

Fig. S8 Electrochromic performance of PANI: (a) UV-vis transmission spectra; (b) in situ optical response between the colored and bleached states from -0.2 to 0.8 V for 10 s at 732 nm; (c) the photos of color changes under different potentials.