Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Interface engineering in core-shell Co₉S₈@MoS₂ nanocrystals induces enhanced

hydrogen evolution in acidic and alkaline media

Jiace Hao, Hongyin Hu, Yuan Dong, Jingwen Hu, Xinxin Sang, Fang Duan, Shuanglong Lu, Han Zhu*, Mingliang Du

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of

Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

Figure S1. SEM images of PAN/CoMo precursor nanofibers of $F-Co_9S_8@MoS_2/CNFs$ (a) and $S-Co_9S_8@MoS_2/CNFs$ (b). (c) XRD patterns of PAN/CoMo precursor nanofibers of F-Co_9S_8@MoS_2/CNFs and S-Co_9S_8@MoS_2/CNFs.

Figure S2. Electrochemical cyclic voltammograms curves of $S-Co_9S_8@MoS_2/CNFs$ and $F-Co_9S_8@MoS_2/CNFs$ in 0.5 M H₂SO₄ (a, b) and 1.0 M KOH (c, d) at scan rates of 10, 20, 30, 40, and 50 mV s⁻¹.

Figure S3. Calculation of C_{dl} by plotting Capacitive currents (Δj) against scan rates in 0.5 M H₂SO₄ (a) or 1.0 M KOH (b).

Figure S4. Polarization curves of $F-Co_9S_8@MoS_2/CNFs$ and $S-Co_9S_8@MoS_2/CNFs$ normalized by ECSA in 0.5 M H₂SO₄ (a) or 1.0 M KOH (b).

Table S1. Comparison of sulfide-based electrocatalysts.

Catalysts	Electrolyte	η_{10} (mA cm ⁻²)	η_{100} (mA cm ⁻²)	Tafel Slope (mV dec ⁻¹)	Refence
Co ₉ S ₈ /MoS _x nanotubes	0.5 M H ₂ SO ₄	161	/	78	[1]
Co ₉ S ₈ @MoS ₂ HNBs	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	106	/	51.8	[2]
$Co_9S_8@MoS_2$ hybrids	$0.5 \text{ M} \text{H}_2\text{SO}_4$	171	/	123	[3]
	1.0 M KOH	143	/	117	
Co ₉ S ₈ -30@MoS _x /CC	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	98	165	64.8	[4]
MoS ₂ /Ni ₃ S ₂	1.0 M KOH	110	/	83.1	[5]
CoMoS-2-C	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	135	/	50	[6]
Hollow CoS _x @MoS ₂ microcubes	$0.5 \text{ M} \text{H}_2\text{SO}_4$	239	/	103	[7]
Co ₉ S ₈ /NC@MoS ₂	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	117	/	68.8	
	1.0 M KOH	67	/	60.3	[8]
	1.0 M PBS	261	/	126.1	
Co ₉ S ₈ -MoS ₂ @3DC	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	230	/	111.7	
	1.0 M KOH	177	/	83.6	[9]
	1.0 M PBS	474	/	172	
Co ₉ S ₈ /1L MoS ₂	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	97	/	71	[10]
Co ₉ S ₈ /CNFs	$0.5 \text{ M} \text{H}_2\text{SO}_4$	165	/	83	[11]
Pd ₁₆ S ₇ /MoS ₂ /CNFs	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	83	/	113	[12]
Co ₉ S ₈ @MoS ₂ /CNFs	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	190	/	110	[13]
Co ₉ S ₈ HMs-140/C	0.1 M KOH	250	/	98	[14]
Co ₉ S ₈ /HWS ₂ /CNFs	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	83	235	56	[15]
	1.0 M KOH	87	375	72	
S-Co ₉ S ₈ @ MoS ₂ /CNFs	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	77	236	83	This
	1.0 M KOH	122	322	66	work

Figure S5. The Nyquist plots of $F-Co_9S_8@MoS_2/CNFs$ and $S-Co_9S_8@MoS_2/CNFs$ in 0.5 M H₂SO₄ (a) and 1.0 M KOH (b) at $\eta = 10$ mV.

Table S2. R_{ct} values of F-Co₉S₈@MoS₂/CNFs and S-Co₉S₈@MoS₂/CNFs in 0.5 M H₂SO₄ and 1.0 M KOH at η = 10 mV.

R _{ct}	F-Co ₉ S ₈ @MoS ₂ /CNFs	S-Co ₉ S ₈ @MoS ₂ /CNFs
0.5 M H ₂ SO ₄	2.36	2.11
1.0 M KOH	3.83	2.26

Figure S6. XRD patterns of the S-Co $_9S_8@MoS_2/CNFs$ prepared at different temperatures.

Figure S7. HER LSV curves of S-Co₉S₈@MoS₂/CNFs prepared at different temperatures obtained in (a) 0.5 M H_2SO_4 and (b) 1.0 M KOH.

References

[1] L. Wu, K. Zhang, T. Wang, X. Xu, Y. Zhao, Y. Sun, W. Zhong, Y. Du, Cobalt sulfide nanotubes (Co₉S₈) decorated with amorphous MoS_x as highly efficient hydrogen evolution electrocatalyst, ACS Appl. Nano Mater. 1 (2018) 1083–1093. https://doi.org/10.1021/acsanm.7b00271
[2] V. Ganesan, S. Lim, J. Kim, Hierarchical nanoboxes composed of Co₉S₈@MoS₂ nanosheets as efficient electrocatalysts for the hydrogen evolution reaction, Chem. Asian J. 13 (2018) 413-420. https://doi.org/10.1002/asia.201701536

[3] J. Bai, T. Meng, D. Guo, S. Wang, B. Mao, M. Cao, Co₉S₈@MoS₂ core-shell heterostructures as trifunctional electrocatalysts for overall water splitting and Zn−air batteries, ACS Appl. Mater. Interfaces 10 (2018) 1678–1689. https://doi.org/10.1021/acsami.7b14997

[4] X. Zhou, X. Yang, M. Hedhili, H. Li, S. Min, J. Ming, K. Huang, W. Zhang, L. Li, Symmetrical synergy of hybrid Co₉S₈-MoS_x electrocatalysts for hydrogen evolution reaction, Nano Energy 32 (2017) 470-478. https://doi.org/10.1016/j.nanoen.2017.01.011

[5] J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X.D. Zhuang, X.L. Feng, Interface engineering of MoS_2/Ni_3S_2 heterostructures for highly enhanced electrochemical overall-watersplitting activity, Angew. Chem. 55 (2016) 6702-6707. https://doi.org/10.1002/anie.201602237 [6] X. Dai, K. Du, Z. Li, M. Liu, Y. Ma, H. Sun, X. Zhang, Y. Yang, Co-doped MoS_2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution, ACS Appl. Mater. Interfaces 7 (2015) 27242–27253.

https://doi.org/10.1021/acsami.5b08420

[7] L. Yang, L. Zhang, G. Xu, X. Ma, W. Wang, H. Song, D. Jia, Metal–organic-framework-derived hollow CoS_x@MoS₂ microcubes as superior bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions, ACS Sustainable Chem. Eng. 6 (2018) 12961–12968. https://doi.org/10.1021/acssuschemeng.8b02428

[8] H. Li, X. Qian, C. Xu, S. Huang, C. Zhu, X. Jiang, L. Shao, L. Hou, Hierarchical porous Co₉S₈/nitrogen-doped carbon@MoS₂ polyhedrons as pH universal electrocatalysts for highly efficient hydrogen evolution reaction, ACS Appl. Mater. Interfaces 9 (2017) 28394–28405. https://doi.org/10.1021/acsami.7b06384

[9] L. Diao, B. Zhang, Q. Sun, N. Wang, N. Zhao, C. Shi, E. Liu, C. He, An in-plane $Co_9S_8@MoS_2$ heterostructure for the hydrogen evolution reaction in alkaline media, Nanoscale 11 (2019) 21479-21486. https://doi.org/10.1039/C9NR06609H

[10] H. Zhu, G. Gao, M. Du, J. Zhou, K. Wang, W. Wu, X. Chen, Y. Li, P. Ma, W. Dong, F. Duan, M. Chen, G. Wu, J. Wu, H. Yang, S. Guo, Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis, Adv. Mater. 30 (2018) 1707301. https://doi.org/10.1002/adma.201707301

[11] L. Gu, H. Zhu, D. Yu, S. Zhang, J. Chen, J. Wang, M. Wan, M. Zhang, M. Du, A facile strategy to synthesize cobalt-based self-supported material for electrocatalytic water splitting, Part. Part. Syst. Charact. 34 (2017) 1700189. https://doi.org/10.1002/ppsc.201700189

[12] Y. Wen, H. Zhu, L. Zhang, J. Hao, C. Wang, S. Zhang, S. Lu, M. Zhang, M. Du, Beyond colloidal synthesis: Nanofiber reactor to design self–supported core–shell Pd₁₆S₇/MoS₂/CNFs electrode for efficient and durable hydrogen evolution catalysis, ACS Appl. Energy Mater. 2 (2019) 2013–2021. https://doi.org/10.1021/acsaem.8b02105

[13] H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao,
X. Zhang, When cubic cobalt sulfide meets layered molybdenum disulfide: A core–shell system toward synergetic electrocatalytic water splitting, Adv. Mater. 27 (2015) 4752-4759. https://doi.org/10.1002/adma.201501969

[14] Y. Zhang, S. Chao, X. Wang, H. Han, Z. Bai, L. Yang, Hierarchical Co₉S₈ hollow microspheres as multifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions, Electrochim. Acta 246 (2017) 380-390.

https://doi.org/10.1016/j.electacta.2017.06.058

[15] S. Zhang, Y. Li, H. Zhu, S. Lu, P. Ma, W. Dong, F. Duan, M. Chen, M. Du, Understanding the role of nanoscale heterointerfaces in core/shell structures for water splitting: Covalent bonding interaction boosts the activity of binary transition-metal sulfides, ACS Appl. Mater. Interfaces 12 (2020) 6250–6261. https://doi.org/10.1021/acsami.9b19382