Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Efficient charge transfer on tunable morphology of TiO₂/MoS₂ photocatalyst for enhanced hydrogen production

Amit Gautam, ^[a,b] Yendrapati Taraka Prabhu, ^[a,c] Ujjwal Pal, ^[a,b]*

^aAcademy of Scientific and Innovative Research (AcSIR), New Delhi, India

^bDepartment of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.

^cAnalytical and structural Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.

*Corresponding author. E-mail address: <u>upal03@gmail.com</u>

CHARACTERIZATION

The crystallographic phase of the prepared samples were determined by X-ray diffraction (XRD). The crystallite size was calculated by using the Scherrer formula (d = $0.9\lambda/B \cos \theta$. where d, λ , B and θ are the crystallite size, Cu K α wavelength, full width at half maximum (FWHM) intensity in radians and Bragg's diffraction angle, respectively. The light harvesting capability of the samples were assessed by using UV-vis diffuse reflectance spectroscopy (DRS) Perkin Elmer Lambda 750 accompanied by an integrating sphere accessory and utilizing BaSO₄ as a diffuse reflectance standard in the wavelength spanning from 300 to 2000 nm. The valance states and surface chemical composition of sample was studied by XPS analysis on a KRATOS AXIS 165 with Mg Kα irradiation. About 10-9 Torr pressure was maintained in the spectrometer. The Field emission scanning electron microscopy (FESEM) images of sample were taken by using JEOL JSM 7610F. The high-resolution transmission electron microscopy (HR-TEM) images of TiO₂@MoS₂ were obtained using FEI Tecnai FE12 transmission electron microscope with a changeable accelerating voltage range of 40- 120V. All TEM samples were prepared by depositing a drop of diluted suspensions in acetone on a carbon coated copper grid and allowed to dry naturally. Photoelectrochemical studies were executed on CHI 6005E electrochemical analyzer (CH Instruments Inc., USA).

Scheme S1. Schematic presentation for preparation of TiO_2/MoS_2 composite.

Figure S1. XRD pattern of TiO_2 , MoS_2 And TiO_2/MoS_2 composite.

Figure S2. UV-Vis DRS spectra of TNS/MoS₂

Figure S3. Tauc plot of TiO₂ and TiO₂/MoS₂ composite.

Figure S4. SAED pattern of (a)TiO₂/MoS₂, (b)TNT/MoS₂, (c)HPT/MoS₂ and (d) TNS/MoS₂.

Figure S5. EDAX pattern of (a) TiO_2/MoS_2 (b) TNS/MoS_2 (c) TNT/MoS_2 and (d) HPT/MoS_2.

Figure S6. Elemental mapping of TNS/MoS₂

Figure S7. Survey XPS spectrum of (a)TiO₂ /MoS₂ (b)TNS/MoS₂ (c) TNT/MoS₂ and (d) HPT/MoS₂.

Table S1. Standard deviation of XPS analysis of actual data and fitted data (mentioned in %)

Catalyst	Ti	0	Mo	S
TiO ₂ /MoS ₂	1.42±0.23	0.88±0.085	4.23±0.12	5.13±0.13
TNT/MoS ₂	1.63±0.41	0.86±0.075	5.03±0.17	4.9±0.11
TNS/MoS ₂	1.57±0.25	0.79±0.065	4.61±0.12	5.09±0.14
HPT/MoS ₂	1.61 ± 0.52	0.85±0.054	4.83±0.15	4.76±0.12

S.No	Methods	Materials	Light Source	SED	Vessel	H ₂ evolution rate (μmol g ⁻¹ h ⁻¹)	Ref.
1	Hydrothermal	CuInS ₂ /MoS ₂ /TiO ₂	300W Xenon arc lamp	$\begin{array}{c} {\rm Na_2S}\ \&\\ {\rm Na_2SO_3}\\ (0.1{\rm M}) \end{array}$	Pyrex flask	141	1
2	Ball mill	MoS ₂ /TiO ₂ (P25)	300W Xenon arc lamp	Methanol	Not mentioned	150.7	2
3	Hydrothermal	MoS ₂ /TiO ₂ nanofibre	300W Xenon arc lamp	$\begin{array}{c} Na_2S \& \\ Na_2SO_3 \\ (0.25M) \end{array}$	Quartz flask	490	3
4	CVD	MoS ₂ /TiO ₂ nanotube	Not mentione d	Not mentioned	Not mentioned	440	4
5	Hydrothermal	MoS ₂ /B-TiO ₂	300W UV xenon arc lamp	Methanol	Pyrex flask	500	5
6	Hydrothermal	MoS ₂ /TiO ₂ nanofibre	300W Xenon arc lamp	$\begin{array}{c} Na_2S \\ (0.35M) \\ Na_2SO_3 \\ (0.25M) \end{array}$	Quartz flask	1600	6
7	Hydrothermal	MoS ₂ QD/TiO ₂	One sun	Methanol	Quartz flask	3100	7
8	Hydrothermal	MOF-derived flower like MoS ₂ /TiO ₂	300W Xenon arc lamp	TEOA	Not Mentioned	10046	8
9	CVD	MoS ₂ /TiO ₂ nanosheet	300W Xenon arc lamp	Ethanol	Quartz flask	4300	9
10	Hydrothermal	MoS ₂ - TiO ₂ /Au Hybrid	300W Xenon arc lamp	Methanol	Quartz flask	190	10
11	Hydrothermal	MoS ₂ /TiO ₂ (commercial anatase)	300W Xenon arc lamp	$\begin{array}{c} Na_2S \\ (0.3M) \\ Na_2SO_3 \\ (0.3M) \end{array}$	Pyrex flask	41.33	Our work
12	Hydrothermal	MoS ₂ /TiO ₂ (nanotubes)	300W Xenon arc lamp	Na ₂ S (0.3M) Na ₂ SO ₃ (0.3M)	Pyrex flask	29.71	Our work
13	Hydrothermal	MoS ₂ /TiO ₂ (nanosheets)	300W Xenon arc lamp	Na ₂ S (0.3M) Na ₂ SO ₃ (0.3M)	Pyrex flask	77.41	Our work
14	Hydrothermal	MoS ₂ /TiO ₂ (hierarchical)	300W Xenon arc lamp	$\begin{array}{c} Na_2S \\ (0.3M) \\ Na_2SO_3 \\ (0.3M) \end{array}$	Pyrex flask	65.54	Our work

Table S2. Comparative table of photocatalytic hydrogen production.

S.No	Sample	Mo(mg/l)	Ti(mg/l)
1	TiO ₂ /MoS ₂	10.37	437.0
2	TNT/MoS ₂	12.57	453.5
3	HPT/MoS ₂	13.59	445.9
4	TNS/MoS ₂	11.31	460.6

Table S3. ICP-AES analysis of different composite.

- Y-J. Yuan, G. Fang, D. Chen, Y. Huang, Li-X. Yang, D-P. Cao, J. Wang, Yu Z-T and Zou Z-G, *Dalton Trans.*, 2018, 47, 5652-5659.
- 2. X. Yang, H. Huang, B. Jin, J. Luo and X. Zhou, RSC Adv., 2016, 6, 107075-107080.
- B. Ma, P-Y. Guan, Q-Y. Li, M. Zhang and S-Q. Zang, *Appl. Mater. Interfaces.*, 2016, 8, 26794–26800.
- H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B-K. Tay, C. Xue, X. Hu, S-T. Pantelides, W. Zhou and Liu Z, *Adv. Energy Mater.*, 2016, 6, 1600464.
- Y-Y. Li, J-H. Wang, Z-J. Luo, K. Chen, Z-Q. Cheng, L. Ma, S. Ding, L. Zhou and Q-Q. Wang, *Sci Rep.*, 2017, 7, 7178.