Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

> Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021 Supporting information

Silica covering driven intensity enhancement and handedness inversion of the CPL signals of the supramolecular assemblies

Pan Jiang,^a Hongkun Li,*^{a,b} Wei Liu, Yi Li,*^a Baozong Li^a and Yonggang Yang*^a

^aState and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. E-mail: H. Li, hkli@suda.edu.cn; Y. Li, liyi@suda.edu.cn; Y. Yang, ygyang@suda.edu.cn

^bState Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China.

Table of Contents

Fig. S1 WAXRD patterns of the xerogels and hybrid silicas.

Fig. S2 CD and UV-vis spectra of Tolane-1 in (R)-(+)-1-phenylethanol and (S)-(-)-1-phenylethanol $(1 \times 10^{-4} \text{ M})$.

Fig. S3 (a) Emission spectra of (L, L)-T in methanol/water mixtures with different water fractions (f_w), Concentration: 1.0×10^{-5} M; excitation wavelength: 320 nm, (b) Plot of relative emission peak intensity (I/I_0) versus f_w of the methanol-water mixtures, where I = emission intensity and I_0 = emission intensity in methanol solution.

Table S1 The $\Phi_{\rm F}$ of the solution (1.0 × 10⁻⁵ M in methanol), xerogels of self-assemblies and hybrid silica powders of (L, L)- and (D, D)-T

Table S2 The g_{lum} values of the solution (1.0 × 10⁻⁴ M in methanol), xerogels of self-assemblies, hybrid silica powders of (L, L)- and (D, D)-T

Fig. S1 WAXRD patterns of the xerogels and hybrid silicas.

Fig. S2 CD and UV-*vis* spectra of Tolane-1 in (R)-(+)-1-phenylethanol and (S)-(-)-1-phenylethanol (1×10^{-4} M).

Fig. S3 (a) Emission spectra of (L, L)-T in methanol/water mixtures with different water fractions (f_w), Concentration: 1.0×10^{-5} M; excitation wavelength: 320 nm, (b) Plot of relative emission peak intensity (I/I_0) versus f_w of the methanol-water mixtures, where I = emission intensity and $I_0 =$ emission intensity in methanol solution.

self-assemblies and hybrid silica powders of (L, L) - and (D, D) -T				
$arPhi_{ m F}$	(L, L) -T	(D, D) - T		
Solution	34.6%	34.7%		

53.1%

56.7%

51.7%

56.3%

Xerogels of self-assemblies

Hybrid silica powders

Table S1 The $\Phi_{\rm T}$ of the solution (1.0 \times 10⁻⁵ M in methanol) xerosels of

Table S2 The g_{lum} values of the solution (1.0 \times 10⁻⁴ M in methanol), xerogels of self-assemblies, hybrid silica powders of (L, L)- and (D, D)-T

g_{lum} values	(L, L) -T	(D, D) -T
Solution	-8.5×10^{-5}	$+6.0 \times 10^{-5}$
Xerogels of self-assemblies	-2.3×10^{-3}	$+1.1 \times 10^{-3}$
Hybrid silica powders	$+4.4 \times 10^{-3}$	-5.4×10^{-3}