Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Copper(I)-Catalyzed Regioselective Ullmann-Type Coupling of Primary Carbamates and 5-Substituted-1,2,3triiodobenzenes: Facile Synthesis of 2,3-Diiodinated N-Arylcarbamates as Potential Antimicrobial Candidates

Supporting Information

R. M. Al-Zoubi et. al.

Table of Contents

Table of Contents				
1.		Experimental Details and Compound Data	4	
1.1		General Information	4	
1.2		General procedure for 2,3-diiodophenylcarbamate derivatives from 5-substituted-1,2,3- triiodobenzenes <i>via</i> Ullmann-type C-N cross-coupling reaction	4	
	1.2.1	Synthesis of methyl (2,3-diiodophenyl)carbamate (5 _A)	5	
	1.2.2	Synthesis of ethyl (2,3-diiodophenyl)carbamate (6_A)	5	
	1.2.3	Synthesis of N-(2,3-diiodophenyl)-2-phenoxyacetamide (7 _A)	5	
	1.2.4	Synthesis of tert-butyl (2,3-diiodophenyl)carbamate ($m{B}_A$)	6	
	1.2.5	Synthesis of methyl (2,3-diiodo-5-methylphenyl)carbamate ($m{10}_A$)	6	
	1.2.6	Synthesis of ethyl (2,3-diiodo-5-methylphenyl)carbamate (11_A)	7	
	1.2.7	Synthesis of N-(2,3-diiodo-5-methylphenyl)-2-phenoxyacetamide (12 _A)	7	
	1.2.8	Synthesis of tert-butyl (2,3-diiodo-5-methylphenyl)carbamate (13_A)	7	
	1.2.9	Synthesis of ethyl (5-fluoro-2,3-diiodophenyl) carbamate (15_A)	8	
	1.2.10	Synthesis of benzyl (5-fluoro-2,3-diiodophenyl)carbamate (16 _A)	8	
	1.2.11	Synthesis of ethyl (5-chloro-2,3-diiodophenyl) carbamate (17_A)	8	
	1.2.12	Synthesis of benzyl (5-chloro-2,3-diiodophenyl)carbamate (18_A)	9	
	1.2.13	Synthesis of ethyl (5-bromo-2,3-diiodophenyl)carbamate ($m{20}_A$)	9	
	1.2.14	Synthesis of benzyl (5-bromo-2,3-diiodophenyl) carbamate (21_A)	10	
	1.2.15	Synthesis of methyl (2,3-diiodo-5-methoxyphenyl) carbamate (22_A)	10	
	1.2.16	Synthesis of ethyl (2,3-diiodo-5-methoxyphenyl) carbamate (23_A)	10	
	1.2.17	Synthesis of benzyl (2,3-diiodo-5-methoxyphenyl)carbamate (24_A)	11	
	1.2.18	Synthesis of tert-butyl (2,3-diiodo-5-methoxyphenyl) carbamate (26_A)	11	
	1.2.19	Synthesis of methyl 3-((ethoxycarbonyl)amino)-4,5-diiodobenzoate (27 _A)	12	
	1.2.20	Synthesis of ethyl (3-bromo-2-iodophenyl)carbamate (28 _A)	12	
	1.2.21	Synthesis of ethyl (3-chloro-2-iodophenyl)carbamate (29 _A)	12	
1.3		General procedure for <i>Sonogashira</i> cross-coupling reaction of benzyl (5-chloro-2,3- diiodophenyl)carbamate 24_{A}	13	
	1.3.1	Synthesis of benzyl (5-chloro-3-iodo-2-((4-methoxyphenyl)ethynyl)phenyl)-carbamate (34) and be (5-chloro-2,3-bis((4-methoxyphenyl)ethynyl)phenyl)-carbamate (bis-coupling pdct)	<i>nzyl</i> 13	
1.4		General procedure for Suzuki-Miyaura cross-coupling reaction of benzyl (5-chloro-2,3- diiodophenyl)carbamate (24_A)	14	
	1.4.1	Synthesis of benzyl (4-chloro-6-iodo-4'-methoxy-[1,1'-biphenyl]-2-yl)carbamate (35) and benzyl (5	'_	
		chloro-4,4"-dimethoxy-[1,1':2',1"-terphenyl]-3'-yl)carbamate (bis-coupling pdct)	15	
1.5		NMR Spectra for New Compounds	16	
	1.5.1	¹ H-NMR of methyl (2.3-diiodonhenyl)carbamate (5 ₄) in CDCl ₃ at 2.5 °C.	16	
	1.5.2	^{13}C -NMR of methyl (2.3-diiodophenyl)carbamate (5 ₄) in CDCl ₃ at 25 °C.	17	
	1.5.3	¹ H-NMR of ethyl (2.3-diiodophenyl)carbamate (6_{4}) in CDCl ₃ at 25 °C.	18	
	1.5.4	^{13}C -NMR of ethyl (2,3-diiodophenyl)carbamate (6_A) in CDCl ₃ at 25 °C	19	
	1.5.5	¹ H-NMR of N-(2,3-diiodophenyl)-2-phenoxyacetamide (7_A) in CDCl ₃ at 25 °C.	20	
	1.5.6	13 C-NMR of N-(2,3-diiodophenyl)-2-phenoxyacetamide (7_A) in CDCl ₃ at 25 °C.	21	
	1.5.7	¹ H-NMR of tert-butyl (2,3-diiodophenyl)carbamate (8 _A) in CDCl ₃ at 25 °C	22	
	1.5.8	¹³ C-NMR of tert-butyl (2,3-diiodophenyl)carbamate (8_A) in CDCl ₃ at 25 °C	23	
	1.5.9	¹ H-NMR of (2,3-diiodo-5-methylphenyl)carbamate (12_A) in CDCl ₃ at 25 °C	24	
	1.5.10	¹³ C-NMR of (2,3-diiodo-5-methylphenyl)carbamate (10_A) in CDCl ₃ at 25 °C	25	
	1.5.11	¹ H-NMR of ethyl (2,3-diiodo-5-methylphenyl)carbamate (11_A) in CDCl ₃ at 25 °C	26	
	1.5.12	¹³ C-NMR of ethyl (2,3-diiodo-5-methylphenyl)carbamate (11_A) in CDCl ₃ at 25 °C	27	
	1.5.13	¹ H-NMR of benzyl (2,3-diiodo-5-methylphenyl)carbamate (12_A) in CDCl ₃ at 25 °C	28	
	1.5.14	¹³ C-NMR of benzyl (2,3-diiodo-5-methylphenyl)carbamate (12 _A) in CDCl ₃ at 25 °C	29	

Page 2

Department of Chemistry

1.5.15	¹ H-NMR of tert-butyl (2,3-diiodo-5-methylphenyl)carbamate (13 ₄) in CDCl ₃ at 25 °C	30
1.5.16	¹³ C-NMR of tert-butyl (2,3-diiodo-5-methylphenyl)carbamate (13_A) in CDCl ₃ at 25 °C.	31
1.5.17	¹ H-NMR of ethyl (5-fluoro-2,3-diiodophenyl)carbamate (15 ₄) in CDCl ₃ at 25 °C	32
1.5.18	¹³ C-NMR of ethyl (5-fluoro-2,3-diiodophenyl)carbamate (15_A) in CDCl ₃ at 25 °C	33
1.5.19	¹ H-NMR of benzyl (5-fluoro-2,3-diiodophenyl)carbamate (16 _A) in CDCl ₃ at 25 °C	34
1.5.20	¹³ C-NMR of benzyl (5-fluoro-2,3-diiodophenyl)carbamate (16 _A) in CDCl ₃ at 25 °C	35
1.5.21	¹ H-NMR of ethyl (5-chloro-2,3-diiodophenyl)carbamate (17_A) in CDCl ₃ at 25 °C.	36
1.5.22	¹³ C-NMR of ethyl (5-chloro-2,3-diiodophenyl)carbamate (17_A) in CDCl ₃ at 25 °C	37
1.5.23	¹ H-NMR of benzyl (5-chloro-2,3-diiodophenyl)carbamate (18_A) in CDCl ₃ at 25 °C	38
1.5.24	¹³ C-NMR of benzyl (5-chloro-2,3-diiodophenyl)carbamate ($1B_A$) in CDCl ₃ at 25 °C	39
1.5.25	¹ H-NMR of ethyl (5-bromo-2,3-diiodophenyl)carbamate (20_A) in CDCl ₃ at 25 °C	40
1.5.26	¹³ C-NMR of ethyl (5-bromo-2,3-diiodophenyl)carbamate (20_A) in CDCl ₃ at 25 °C	41
1.5.27	¹ H-NMR of benzyl (5-bromo-2,3-diiodophenyl)carbamate (21_A) in CDCl ₃ at 25 °C	42
1.5.28	¹³ C-NMR of benzyl (5-bromo-2,3-diiodophenyl)carbamate (21_A) in CDCl ₃ at 25 °C	43
1.5.29	¹ H-NMR of methyl (2,3-diiodo-5-methoxyphenyl)carbamate (22_A) in CDCl ₃ at 25 °C	44
1.5.30	13 C-NMR of methyl (2,3-diiodo-5-methoxyphenyl)carbamate (22 _A) in CDCl ₃ at 25 °C	45
1.5.31	¹ H-NMR of ethyl (2,3-diiodo-5-methoxyphenyl)carbamate (23_A) in CDCl ₃ at 25 °C	46
1.5.32	¹³ C-NMR of ethyl (2,3-diiodo-5-methoxyphenyl)carbamate (23_A) in CDCl ₃ at 25 °C	47
1.5.33	¹ H-NMR of benzyl (2,3-diiodo-5-methoxyphenyl)carbamate (24_A) in CDCl ₃ at 25 °C	48
1.5.34	¹³ C-NMR of benzyl (2,3-diiodo-5-methoxyphenyl)carbamate (24_A) in CDCl ₃ at 25 °C	49
1.5.35	¹ H-NMR of tert-butyl (2,3-diiodo-5-methoxyphenyl)carbamate (26 _A) in CDCl ₃ at 25 °C	50
1.5.36	¹³ C-NMR of tert-butyl (2,3-diiodo-5-methoxyphenyl)carbamate (26 _A) in CDCl ₃ at 25 °C	51
1.5.37	¹ H-NMR of methyl 3-((ethoxycarbonyl)amino)-4,5-diiodobenzoate (27_A) in CDCl ₃ at 25 °C	52
1.5.38	¹³ C-NMR of methyl 3-((ethoxycarbonyl)amino)-4,5-diiodobenzoate (27 _A) in CDCl ₃ at 25 °C	53
1.5.39	¹ H-NMR of ethyl (3-bromo-2-iodophenyl)carbamate (28 _A) in CDCl ₃ at 25 °C.	54
1.5.40	¹³ C-NMR of ethyl (3-bromo-2-iodophenyl)carbamate (28_A) in CDCl ₃ at 25 °C	55
1.5.41	¹ H-NMR of ethyl (3-chloro-2-iodophenyl)carbamate (29 _A) in CDCl ₃ at 25 °C	56
1.5.42	¹³ C-NMR of ethyl (3-chloro-2-iodophenyl)carbamate (29_{A}) in CDCl ₃ at 25 °C	57
1.5.43	¹ H-NMR of benzyl (5-chloro-3-iodo-2-((4-methoxyphenyl)ethynyl)phenyl)-carbamate (34) in CDCl ₃	at 58
1.5.44	¹³ C-NMR of benzyl (5-chloro-3-iodo-2-((4-methoxyphenyl)ethynyl)phenyl)-carbamate (34) in CDCl ₃ 25 °C	at
1.5.45	1 H-NMR of benzyl (5-chloro-2,3-bis((4-methoxyphenyl)ethynyl)phenyl)-carbamate in CDCl ₃ at 25 °	<i>C</i>
1.5.46	¹³ C-NMR of benzyl (5-chloro-2,3-bis((4-methoxyphenyl)ethynyl)phenyl)-carbamate in CDCl ₃ at 25 °	<i>C</i> .
1.5.47	¹ H-NMR of benzyl (4-chloro-6-iodo-4'-methoxy-[1,1'-biphenyl]-2-yl)carbamate (35) in CDCl ₃ at 25 $^\circ$	∘C 62
1.5.48	13 C-NMR of benzyl (4-chloro-6-iodo-4'-methoxy-[1,1'-biphenyl]-2-yl)carbamate (35) in CDCl ₃ at 25 $^{\circ}$	»С 63
1.5.49	¹ H-NMR of benzyl (5'-chloro-4,4''-dimethoxy-[1,1':2',1''-terphenyl]-3'-yl)carbamate in CDCl ₃ at 25 °	<i>C</i>
1.5.50	13 C-NMR of benzyl (5'-chloro-4,4''-dimethoxy-[1,1':2',1''-terphenyl]-3'-yl)carbamat in CDCl ₃ at 25 of	2 65
X-ray of	new compounds	66
1.6.1	X-ray data of ethyl (2,3-diiodophenyl)carbamate (6_A)	66
1.6.2	X-ray data of ethyl (2,3-diiodo-5-methoxyphenyl)carbamate (23_A)	76

1.6

1. Experimental Details and Compound Data.

1.1 General Information

All commercial reagents and chromatography solvents were used as obtained unless otherwise stated. Ethanol, toluene, ethyl acetate, hexanes, anhydrous sodium sulfate (Na₂SO₄, BDH) were used as received. Anhydrous solvents were distilled over appropriate drying agents prior to use. Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60 F₂₅₄. Merck Silica gel 60 (0.063 - 0.2 mm) was used for column chromatography. Visualization of TLC was accomplished with UV light (254 nm). NMR spectra were recorded on a Bruker-Avance 400 MHz spectrometer. The residual solvent protons (¹H) or the solvent carbon (¹³C) were used as internal standards. ¹H-NMR data are presented as follows: chemical shift in ppm (δ) downfield from trimethylsilane (multiplicity, integration, coupling constant). The following abbreviations are used in reporting NMR data: s, singlet; bs, broad singlet; d, doublet; t, triplet; q, quartet; dq, doublet of quartets; dd, doublet of doublets; m, mutiplet. High resolution mass spectra were recorded using Chemical Ionization (CI) and Electrospray ionization (ESI) techniques.

1.2 General procedure for 2,3-diiodophenylcarbamate derivatives from 5-substituted-1,2,3-triiodobenzenes *via* Ullmanntype C-N cross-coupling reaction

In a flame-dried sealed tube, 1,2,3-triiodoarene (0.66 mmol), primary carbamate (0.79 mmol, 1.2 equiv.), copper iodide (10-mol%), DMEDA (20-mol %), potassium carbonate (4.0 equiv.) and 6.6 mL toluene (0.1M) were added under argon. The mixture was stirred at 110 °C for 12 h. The reaction was cooled down to room temperature and then

50 mL EtOAc was added. The mixture was filtrated over a pad of Celite 545[®]. Organic layers were combined, dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography (5% EtOAc/hexane) to yield the pure desired product.

1.2.1 Synthesis of methyl (2,3-diiodophenyl)carbamate (5_A)

The title compound was prepared using the general procedure and isolated as white solid (**72%** yields). **M.p:** 125-126 °C. **IR** (cast film, cm⁻¹) 3324, 3007, 2994, 1701, 1624, 1251, 1027, 861.

δ_H (400MHz, CDCl₃) δ: 8.00 (d, 1H, *J* = 8.1 Hz), 7.62 (dd, 1H, *J*¹ = 1.2 Hz, *J*² = 7.8 Hz), 7.16 (bs, 1H), 7.09 (dd, 1H, *J*¹ = 8.3 Hz, *J*² = 8.0 Hz), 3.80 (s, 3H). **δ**_C (100 MHz, CDCl₃) δ: 154.2, 140.4, 134.6, 130.5, 119.1, 108.7, 103.5, 52.8. **HRMS** (ESI) m/z for C₈H₈I₂NO₂ [M+H]⁺ : calcd. 403.8644; found, 403.8637.

1.2.2 Synthesis of ethyl (2,3-diiodophenyl)carbamate (6_A)

The title compound was prepared using the general procedure and isolated as white solid (**67%** yields). **M.p:** 116-118 °C. **IR** (cast film, cm⁻¹) 3327, 3004, 2995, 1697, 1627, 1263, 1042, 872.

δ_H (400 MHz, CDCl₃) δ: 8.01 (d, 1H, *J* = 8.2 Hz), 7.62 (d, 1H, *J* = 7.7 Hz), 7.13 (bs, 1H), 7.08 (t, 1H, *J* = 8.04 Hz), 4.24 (q, 2H, *J* = 7.1 Hz), 1.34 (t, 3H, *J* = 7.1 Hz). **δ**_C (100 MHz, CDCl₃) δ: 153.7, 140.6, 134.5, 130.5, 119.1, 108.7, 103.4, 61.9, 14.6. **HRMS** (ESI) m/z for C₉H₁₀I₂NO₂ [M+H]⁺: calcd. Exact 417.8801; found, 417.8798.

1.2.3 Synthesis of N-(2,3-diiodophenyl)-2-phenoxyacetamide (7_A)

The title compound was prepared using the general procedure and isolated as white solid (**77%** yields). **M.p:** 131-132 °C. **IR** (cast film, cm⁻¹) 3361, 3014, 1689, 1614,

1527, 1271, 1107, 943, 764. **δ**_H (400 MHz, CDCl₃) δ: 8.03 (d, 1H, *J* = 8.2 Hz), 7.63 (d, 1H, *J* = 7.8 Hz), 7.34-7.44 (m, 5H), 7.23 (bs, 1H), 7.10 (t, 1H, *J*¹ = 8.0 Hz), 5.22 (s, 2H). **δ**_c (100 MHz, CDCl₃) δ: 153.6, 140.4, 135.9, 134.7, 130.5, 128.8, 128.7, 128.6, 119.2, 108.8, 103.6, 67.6. **HRMS** (ESI) m/z for C₁₄H₁₂I₂NO₂ [M+H]⁺: calcd. Exact 479.8957; found, 479.8951.

1.2.4 Synthesis of tert-butyl (2,3-diiodophenyl)carbamate (8_A)

The title compound was prepared using the general procedure and isolated as colorless oil (**71%** yields). **IR** (cast film, cm⁻¹) 3351, 3012, 2994, 1694, 1644, 1276, 1043, 869. $\delta_{\rm H}$ (400 MHz,

CDCl₃) δ: 8.01 (d, 1H, *J* = 7.9 Hz), 7.59 (d, 1H, *J* = 7.8 Hz), 7.05 (dd, 1H, *J* = 7.9 Hz, *J* = 8.2 Hz), 7.02 (bs, 1H), 1.53 (s, 9H). δ_c (100 MHz, CDCl₃) δ: 152.8, 134.2, 130.4, 119.1, 108.7, 103.4, 81.5, 28.4. **HRMS** (ESI) m/z for C₁₁H₁₄I₂NO₂ [M+H]⁺: calcd. 445.9114; found, 445.9106.

1.2.5 Synthesis of methyl (2,3-diiodo-5-methylphenyl)carbamate (10_A)

The title compound was prepared using the general procedure and isolated as white solid (**84%** yields). **M.p:** 123-124 °C. **IR** (cast film, cm⁻¹) 3341, 3007, 2992, 1692, 1627, 1273, 1136, 938,

626. δ_H (400MHz, CDCl₃) δ: 7.83 (s, 1H), 7.49 (s, 1H), 7.10 (bs, 1H), 3.79 (s, 3H), 2.26 (s, 3H). δ_c (100 MHz, CDCl₃) δ: 154.2, 141.1, 139.8, 135.5, 120.2, 108.5, 99.5, 52.8, 21.0.
HRMS (ESI) m/z for C₉H₁₀I₂NO₂ [M+H]⁺ : calcd. 417.8801; found, 417.8798.

1.2.6 Synthesis of ethyl (2,3-diiodo-5-methylphenyl)carbamate (11_A)

The title compound was prepared using the general procedure and isolated as white solid (**78%** yields). **M.p:** 101-102 °C. **IR** (cast film, cm⁻¹) 3361, 3002, 2988, 1701, 1637, 1267, 1109, 869.

δ_H (400 MHz, CDCl₃) δ: 7.84 (s, 1H), 7.48 (d, 1H, *J* = 0.9 Hz), 7.07 (bs, 1H), 4.23 (q, 2H, *J* = 7.1 Hz), 1.33 (t, 3H, *J* = 7.1 Hz). **δ**_c (100 MHz, CDCl₃) δ: 153.8, 141.0, 140.0, 135.4, 120.1, 108.5, 99.4, 61.8, 21.0, 14.6. **HRMS** (ESI) m/z for C₁₀H₁₂I₂NO₂ [M+H]⁺: calcd. Exact 431.8957; found, 431.8955.

1.2.7 Synthesis of N-(2,3-diiodo-5-methylphenyl)-2-phenoxyacetamide (12_A)

The title compound was prepared using the general procedure and isolated as white solid (**77%** yields). **M.p:** 136-137 °C. **IR** (cast film, cm⁻¹) 3348, 3003, 2997, 1698, 1634, 1253, 1109, 933, 684. δ_H (400 MHz, CDCl₃) δ: 7.86 (s,

1H), 7.50 (s, 1H), 7.36-7.51 (m, 5H), 7.17 (bs, 1H), 5.22 (s, 2H), 2.26 (s, 3H). δc (100 MHz, CDCl₃) δ: 153.6, 141.0, 139.8, 135.9, 135.5, 128.8, 128.6, 128.5, 120.2, 108.5, 99.5, 67.5, 21.0. **HRMS** (ESI) m/z for C₁₅H₁₄I₂NO₂ [M+H]⁺: calcd. Exact 493.9114; found, 493.9110.

1.2.8 Synthesis of tert-butyl (2,3-diiodo-5-methylphenyl)carbamate (13_A)

The title compound was prepared using the general procedure and isolated as colorless oil (**68%** yields). **IR** (cast film, cm⁻¹) 3348, 3008, 2989, 1695, 1637, 1286, 1112, 1031, 827. δ_H (400

MHz, CDCl₃) δ: 7.85 (s, 1H), 7.47 (s, 1H), 6.99 (bs, 1H), 2.25 (s, 3H), 1.53 (s, 9H). δc (100

MHz, CDCl₃) δ: 152.9, 140.9, 140.4, 135.1, 119.9, 108.4, 99.3, 81.4, 28.5, 21.0. **HRMS** (ESI) m/z for C₁₂H₁₆I₂NO₂ [M+H]⁺: calcd. 459.9270; found, 459.9262.

1.2.9 Synthesis of ethyl (5-fluoro-2,3-diiodophenyl)carbamate (15_A)

The title compound was prepared using the general procedure and isolated as white solid (**96%** yields). **M.p:** 93-94 °C. **IR** (cast film, cm⁻¹) 3376, 3014, 3001, 1689, 1612, 1283, 1032, 897, 784.

δ_H (400 MHz, CDCl₃) δ: 7.96 (dd, 1H, *J*¹ = 2.7 Hz, *J*² = 10.9 Hz), 7.40 (dd, 1H, *J*¹ = 2.8 Hz, *J*² = 7.4 Hz), 7.24 (bs, 1H), 4.25 (q, 2H, *J* = 7.1 Hz), 1.33 (t, 3H, *J* = 7.1 Hz). **δ**_c (100 MHz, CDCl₃) δ: 164.3, 161.8, 153.4, 141.4, 141.3, 121.6, 121.3, 108.1, 108.0, 106.8, 106.5, 96.5, 96.4, 62.1, 14.6. **HRMS** (ESI) m/z for C₉H₉FI₂NO₂ [M+H]⁺: calcd. Exact 435.8707; found, 435.8701.

1.2.10 Synthesis of benzyl (5-fluoro-2,3-diiodophenyl)carbamate (16_A)

The title compound was prepared using the general procedure and isolated as white solid (**90%** yields). **M.p:** 133-134°C. **IR** (cast film, cm⁻¹) 3375, 3010, 2997, 1692,

F 1607, 1238, 1097, 1008, 914, 768. δ_H (400 MHz, CDCl₃) δ: 8.01 (dd, 1H, *J*¹ = 1.8 Hz, *J*² = 10.9 Hz), 7.36-7.43 (m, 6H), 7.32 (bs, 1H), 5.23 (s, 2H). δ_c (100 MHz, CDCl₃) δ: 164.3, 161.8, 153.2, 141.2, 141.1, 135.6, 128.9, 128.8, 128.7, 121.8, 121.5, 108.2, 108.1, 106.9, 106.6, 96.6, 96.5, 67.8. **HRMS** (ESI) m/z for C₁₄H₁₁FI₂NO₂ [M+H]⁺: calcd. Exact 497.8863; found, 497.8861.

1.2.11 Synthesis of ethyl (5-chloro-2,3-diiodophenyl)carbamate (17_A)

The title compound was prepared using the general procedure and isolated as white solid (**78%** yields). **M.p:** 91-93 °C. **IR** (cast film, cm⁻¹) 3347, 3016, 2984, 1688, 1627, 1283, 1009, 822, 631.

δ_H (400 MHz, CDCl₃) δ: 8.14 (d, 1H, *J* = 1.8 Hz), 7.62 (d, 1H, *J* = 2.0 Hz), 7.18 (bs, 1H), 4.25 (q, 2H, *J* = 7.2 Hz), 1.34 (t, 3H, *J* = 7.2 Hz). **δ**_C (100 MHz, CDCl₃) δ: 153.4, 140.9, 136.3, 133.6, 118.9, 108.8, 100.5, 62.2, 14.6. **HRMS** (ESI) m/z for C₉H₉ClI₂NO₂ [M+H]⁺: calcd. Exact 451.8411; found, 451.8407.

1.2.12 Synthesis of benzyl (5-chloro-2,3-diiodophenyl)carbamate (18_A)

The title compound was prepared using the general procedure and isolated as white solid (**63%** yields). **M.p:** 133-134 °C. **IR** (cast film, cm⁻¹) 3358, 3002, 2984, 1699,

1624, 1284, 1027, 912, 637. $\delta_{\rm H}$ (400 MHz, CDCl₃) δ : 8.16 (d, 1H, *J* = 2.1 Hz), 7.63 (d, 1H, *J* = 2.3 Hz), 7.36-7.42 (m, 5H), 5.22 (s, 2H). $\delta_{\rm C}$ (100 MHz, CDCl₃) δ : 153.3, 140.8, 136.3, 135.6, 133.7, 128.9, 128.8, 128.7, 118.9, 108.8, 100.6, 67.9. **HRMS** (ESI) m/z for C₁₄H₁₁ClI₂NO₂ [M+H]⁺: calcd. Exact 513.8568; found, 513.8564.

1.2.13 Synthesis of ethyl (5-bromo-2,3-diiodophenyl)carbamate (20_A)

The title compound was prepared using the general procedure and isolated as white solid (**69%** yields). **M.p:** 119-120 °C. **IR** (cast film, cm⁻¹) 3359, 3012, 2993, 1689, 1644, 1264, 1057, 961, 762. δ_H (400 MHz, CDCl₃) δ: 8.27 (d, 1H, *J* = 1.9 Hz), 7.76 (d, 1H, *J*

R. M. Al-Zoubi et. al.

= 2.1 Hz), 7.16 (bs, 1H), 4.25 (q, 2H, I = 7.1 Hz), 1.33 (t, 3H, I = 7.1 Hz). δ c (100 MHz, CDCl₃) δ: 153.4, 141.2, 136.2, 124.1, 121.7, 109.2, 101.4, 62.2, 14.6. HRMS (ESI) m/z for C₉H₉BrI₂NO₂ [M+H]⁺: calcd. Exact 495.7906; found, 495.7898.

1.2.14 Synthesis of benzyl (5-bromo-2,3-diiodophenyl)carbamate (21_A)

The title compound was prepared using the general procedure and isolated as white solid (75% yields). M.p: 145-146 °C. IR (cast film, cm⁻¹) 3352, 3019, 2987, 1685, 1598, 1239, 962, 664. δ_H (400 MHz, CDCl₃) δ: 8.28 (s, 1H), 7.77 (d, 1H, *J* = 1.6 Hz), 7.26-

7.44 (m, 5H), 7.24 (bs, 1H), 5.22 (s, 2H). δ_C (100 MHz, CDCl₃) δ: 153.2, 140.9, 136.4, 135.6, 128.9, 128.8, 128.6, 124.1, 121.8, 109.2, 101.5, 67.9. HRMS (ESI) m/z for C₁₄H₁₁BrI₂NO₂ [M+H]⁺: calcd. Exact 557.8063; found, 557.8058.

1.2.15 Synthesis of methyl (2.3-diiodo-5-methoxyphenyl)carbamate (22_A)

The title compound was prepared using the general procedure and isolated as white solid (77% yields). M.p: 125-126 °C. IR (cast film, cm⁻¹) 3482, 3082, 3005, 1687, 1628, 1352, 1278, 1083, ĊСН₂ 843, 622. $\delta_{\rm H}$ (400MHz, CDCl₃) δ : 7.75 (d, 1H, *J* = 2.8 Hz), 7.25 (d, 1H, *J* = 2.8 Hz), 7.17 (bs, 1H), 3.80 (s, 3H), 3.78 (s, 3H). δ_c (100 MHz, CDCl₃) δ: 160.9, 154.1, 140.5, 121.3, 108.4, 105.1, 91.9, 55.8, 52.8. HRMS (ESI) m/z for C₉H₁₀I₂NO₃ [M+H]⁺ : calcd. 433.8750; found, 433.8746

1.2.16 Synthesis of ethyl (2,3-diiodo-5-methoxyphenyl)carbamate (23_A)

The title compound was prepared using the general procedure and isolated as white solid (82% yields). M.p: 89-90 °C. IR (cast film, cm⁻¹) 3351, 3022, 2981, 1691, 1622, 1299, 1285, 1012, 774. δ_H (400 MHz, CDCl₃) δ: 7.77 (d, 1H, I = 2.3 Hz), 7.25 (d, 1H, I = 2.7 Hz), 7.15 (bs, 1H), 4.24 (q, 2H, I = 7.1 Hz), 3.79 (s, 3H), 1.33 (t, 3H, I = 7.1 Hz). δ_{c} (100 MHz, CDCl₃) δ : 160.9, 153.7, 140.7, 121.3, 108.4, 105.0, 91.9, 61.9, 55.8, 14.6. HRMS (ESI) m/z for C10H12I2NO3 [M+H]⁺: calcd. Exact 433.8750; found, 433.8744.

1.2.17 Synthesis of benzyl (2,3-diiodo-5-methoxyphenyl) carbamate (24_A)

The title compound was prepared using the general procedure and isolated as white solid (60% vields). M.p: 105-106 °C. IR (cast film, cm⁻¹) 3354, 3002, 2978, 1697, 1627, 1277, 1251, 1057, 924, 643. **δ**_H (400 MHz, CDCl₃) δ:

7.77 (s, 1H), 7.38-7.42 (m, 5H), 7.25 (m, 2H), 5.22 (s, 2H), 3.78 (s, 3H). δ_C (100 MHz, CDCl₃) δ: 160.9, 153.5, 140.5, 135.8, 128.8, 128.7, 128.5, 121.4, 108.4, 105.2, 91.9, 67.6, 55.8. **HRMS** (ESI) m/z for C₁₅H₁₄I₂NO₃ [M+H]⁺: calcd. Exact 509.9063; found, 509.9054.

1.2.18 Synthesis of tert-butyl (2,3-diiodo-5-methoxyphenyl)carbamate (26_A)

The title compound was prepared using the general procedure and isolated as colorless oil (76% yields). IR (cast film, cm⁻¹) 3359, 3017, 2995, 1675, 1642, 1274, 1245, 1063, 851. **бн** (400

MHz, CDCl₃) δ : 7.76 (d, 1H, *J* = 2.5 Hz), 7.23 (d, 1H, *J* = 2.7 Hz), 7.04 (bs, 1H), 3.78 (s, 3H), 1.53 (s, 9H). δc (100 MHz, CDCl₃) δ: 160.9, 152.7, 141.1, 120.9, 108.3, 104.9, 91.7, 81.5, 55.8, 28.4. **HRMS** (ESI) m/z for C₁₂H₁₆I₂NO₃ [M+H]⁺: calcd. 475.9220; found, 475.9212.

1.2.19 Synthesis of methyl 3-((ethoxycarbonyl)amino)-4,5-diiodobenzoate (27_A)

The title compound was prepared using the general procedure and isolated as white solid (**93%** yields). **M.p:** 107-108 °C. **IR** (cast film, cm⁻¹) 3412, 3022, 2985, 1749, 1684, 1638, 1299, 1246, 1003, 889. **δ**_H (400 MHz, CDCl₃) δ: 8.62 (s, 1H), 8.24 (d, 1H,

J = 1.8 Hz), 7.18 (bs, 1H), 4.25 (q, 2H, *J* = 7.1 Hz), 3.91 (s, 3H), 1.33 (t, 3H, *J* = 7.1 Hz). δc (100 MHz, CDCl₃) δ: 165.4, 153.6, 140.7, 134.9, 132.4, 119.6, 109.2, 108.7, 62.1, 52.7, 14.6. **HRMS** (ESI) m/z for C₁₁H₁₂I₂NO₄ [M+H]⁺: calcd. Exact 475.8856; found 475.8853.

1.2.20 Synthesis of ethyl (3-bromo-2-iodophenyl)carbamate (28_A)

The title compound was prepared using the general procedure and isolated as white solid (**84%** yields). **M.p:** 98-99 °C. **IR** (cast film, cm⁻¹) 3329, 3014, 2997, 1698, 1641, 1263, 1088,

827. δ_H (400 MHz, CDCl₃) δ: 8.00 (d, 1H, *J* = 8.2 Hz), 7.35 (d, 1H, *J* = 8.0 Hz), 7.20 (dd, 1H, *J* = 8.1 Hz, *J* = 8.0 Hz), 7.16 (bs, 1H), 4.23 (q, 2H, *J* = 7.1 Hz), 1.33 (t, 3H, *J* = 7.1 Hz). δc (100 MHz, CDCl₃) δ: 153.6, 141.1, 130.4, 130.2, 127.6, 118.3, 97.1, 61.9, 14.6. **HRMS** (ESI) m/z for C₉H₁₀BrINO₂ [M+H]⁺: calcd. Exact 369.8940; found, 369.8935.

1.2.21 Synthesis of ethyl (3-chloro-2-iodophenyl)carbamate (29_A)

The title compound was prepared using the general procedure and isolated as white solid (**81%** yields). **M.p:** 83-84 °C. **IR** (cast film, cm⁻¹) 3321, 3006, 1701, 1653, 1275, 1097, 849. δ_H

(400 MHz, CDCl₃) δ: 7.96 (d, 1H, J = 8.2 Hz), 7.16-7.29 (m, 3H), 4.25 (q, 2H, J = 7.1 Hz),
1.34 (t, 3H, J = 7.1 Hz). δc (100 MHz, CDCl₃) δ: 153.5, 140.9, 139.1, 129.9, 124.1, 117.8,

94.0, 61.9, 14.6. **HRMS** (ESI) m/z for C₉H₁₀ClINO₂ [M+H]⁺: calcd. Exact 325.9445; found, 325.9442.

1.3 General procedure for Sonogashira cross-coupling reaction of benzyl (5-chloro-2,3-diiodophenyl)carbamate 24_A

flame-dried (5-chloro-2,3-А sealed tube charged with benzvl was diiodophenyl)carbamate (0.60 mmol, 1.0 equiv.), 4-methoxyphenylacetylene (1.0 equiv.), copper iodide (20% mol) and potassium carbonate (7.0 equiv.) in 6.0 mL toluene (0.1M) under argon at room temperature for 24 h. The mixture was diluted with ethyl acetate (50 mL) and filtrated over a pad of Celite 545[®]. Organic layers were combined, dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography (5% EtOAc/hexane) to yield the pure desired product.

1.3.1 Synthesis of benzyl (5-chloro-3-iodo-2-((4-methoxyphenyl)ethynyl)phenyl)carbamate (34)

The title compound was prepared using the general procedure and isolated as white solid (**57%** yields). **M.p:** 107-109 °C. **IR** (cast film, cm⁻¹) 3328, 3025, 2215, 1691, 1617, 1264, 1198, 968, 662. $\delta_{\rm H}$ (400 MHz, CDCl₃) $\delta_{\rm E}$ 8.27 (bs, 1H), 7.32-7.55 (m, 8H), 7.23 (d, 1H, *J* = 2.3 Hz), 6.89 (d, 2H, *J* = 8.7 Hz), 5.24 (s, 2H), 3.84 (s, 3H). $\delta_{\rm C}$ (100 MHz,

CDCl₃) δ:160.4, 152.8, 136.0, 135.6, 133.5, 133.2, 128.9, 128.8, 128.7, 126.7, 124.9, 121.5, 119.0, 114.5, 114.3, 96.3, 83.9, 67.8, 55.5. **HRMS** (ESI) m/z for C₂₃H₁₈ClINO₃ [M+H]⁺: calcd. Exact 518.0020; found 518.0011.

R. M. Al-Zoubi et. al.

Benzyl (5-chloro-2,3-bis((4-methoxyphenyl)ethynyl)phenyl)-carbamate

The title compound was isolated as white solid (**21%** yields). **M.p:** 116-118 °C. $\delta_{\rm H}$ (400 MHz, CDCl₃) δ : 8.24 (bs, 1H), 7.58 (s, 1H), 7.36-7.51 (m, 9H), 7.20 (d, 1H, *J* = 2.0 Hz), 6.87 (dd, 4H, *J* = 9.2 Hz, *J* = 8.8 Hz), 5.25 (s, 2H), 3.84 (s, 3H), 3.82 (s, 3H). $\delta_{\rm C}$ (100

MHz, CDCl₃) δ: 160.4, 160.2, 152.9, 139.7, 135.9, 134.7, 133.4, 133.3, 128.8, 128.6, 128.5, 127.4, 125.7, 117.4, 114.9, 114.5, 114.4, 114.3, 112.7, 101.4, 94.9, 86.1, 81.7, 67.5, 55.5, 55.4. **HRMS** (ESI) m/z for C₃₂H₂₅ClNO₄ [M+H]⁺: calcd. Exact 522.1472; found, 522.1463.

1.4 General procedure for Suzuki-Miyaura cross-coupling reaction of benzyl (5-chloro-2,3-diiodophenyl)carbamate (24_A)

А flame-dried round-bottom flask was charged with benzyl(5-chloro-2,3diiodophenyl)carbamate (0.6 mmol, 1.0 equiv.), an arylboronic acid (1.0 equiv.), tetrakis(triphenylphosphine)palladium(0) (16 mol-%), 6.0 mL toluene (0.1M), potassium carbonate (2 M solution, 1.4 mL), and ethanol (0.4 mL) under argon. The mixture was heated at 100 °C for 12 h. The reaction mixture was cooled down to room temperature and 50 mL EtOAc was added. The aqueous layer was extracted with ethyl acetate (2 X 50 mL). The combined organic layers were washed with brine, dried with anhyd. Na₂SO₄, filtered, and then concentrated under reduced pressure. The crude residue was purified by flash chromatography (5% EtOAc/hexane) to yield the pure desired product.

1.4.1 Synthesis of benzyl (4-chloro-6-iodo-4'-methoxy-[1,1'-biphenyl]-2yl)carbamate (35)

The title compound was prepared using the general procedure and isolated as white solid (**79%** yields). **M.p:** 152-153 °C. **IR** (cast film, cm⁻¹) 3321, 3008, 1694, 1614, 1589, 1286, 1243, 1028, 937, 591. δ_H (400 MHz, CDCl₃) δ: 8.15 (bs, 1H), 7.29-7.45 (m, 6H), 7.17 (d, 2H, *J* = 8.5 Hz),

7.01 (d, 1H, *J* = 2.3 Hz), 6.94 (d, 2H, *J* = 8.5 Hz), 5.24 (s, 2H), 3.86 (s, 3H). δc (100 MHz, CDCl₃) δ: 159.6, 153.3, 148.8, 139.7, 136.7, 135.8, 135.2, 130.3, 128.8, 128.7, 128.6, 125.1, 118.4, 113.6, 92.5, 67.7, 55.5. **HRMS** (ESI) m/z for C₂₁H₁₈ClINO₃ [M+H]⁺: calcd. Exact 494.0020; found, 494.0015.

Benzyl (5'-chloro-4,4"-dimethoxy-[1,1':2',1"-terphenyl]-3'-yl)carbamate

The title compound was isolated as colorless oil (**8%** yields). δ_H (400 MHz, CDCl₃) δ: 8.27 (bs, 1H), 7.35 (m, 5H), 7.10 (d, 1H, *J* = 1.9 Hz), 6.89-6.96 (m, 4H), 6.81 (d, 2H, *J* = 8.6 Hz), 6.67 (d, 2H, *J* = 8.6 Hz), 6.60 (s, 1H), 5.14 (s, 2H), 3.79 (s, 3H),

3.74 (s, 3H). δc (100 MHz, CDCl₃) δ: 159.2, 158.5, 153.2, 143.3, 137.1, 136.1, 133.8, 132.8, 132.1, 130.7, 128.8, 128.5, 127.8, 127.3, 124.9, 117.7, 114.7, 113.4, 67.3, 55.3, 55.2 (missing one peak due to overlapping). HRMS (ESI) m/z for C₂₈H₂₅ClNO₄ [M+H]⁺: calcd. Exact 474.1472; found, 474.1465.

R. M. Al-Zoubi et. al.

1.5 NMR Spectra for New Compound

1.5.1 ¹H-NMR of methyl (2,3-diiodophenyl)carbamate (5_A) in CDCl₃ at 25 °C.

 $_{\rm Page}16$

1.5.2 ¹³C-NMR of methyl (2,3-diiodophenyl)carbamate (5_A) in CDCl₃ at 25 °C.

Page17

1.5.3 ¹H-NMR of ethyl (2,3-diiodophenyl)carbamate (6_A) in CDCl₃ at 25 °C.

1.5.4 ¹³C-NMR of ethyl (2,3-diiodophenyl)carbamate (6_A) in CDCl₃ at 25 °C.

1.5.5 ¹H-NMR of N-(2,3-diiodophenyl)-2-phenoxyacetamide (7_A) in CDCl₃ at 25 °C.

 ${}^{\rm Page}20$

1.5.6 ¹³C-NMR of N-(2,3-diiodophenyl)-2-phenoxyacetamide (7_A) in CDCl₃ at 25 °C.

Page 21

1.5.7 ¹H-NMR of tert-butyl (2,3-diiodophenyl)carbamate (8_A) in CDCl₃ at 25 °C.

WAZ-4-145-S2-1H-CDC13

Department of Chemistry

 ${}^{\rm Page}22$

1.5.9 ¹H-NMR of (2,3-diiodo-5-methylphenyl)carbamate (10_A) in CDCl₃ at 25 °C.

 $P_{age}24$

1.5.10 ¹³C-NMR of (2,3-diiodo-5-methylphenyl)carbamate (10_A) in CDCl₃ at 25 °C.

 ${}^{\rm Page}25$

1.5.11 ¹H-NMR of ethyl (2,3-diiodo-5-methylphenyl)carbamate (11_A) in CDCl₃ at 25 °C.

Department of Chemistry

 ${\rm Page}27$

1.5.13 ¹H-NMR of benzyl (2,3-diiodo-5-methylphenyl)carbamate (12_A) in CDCl₃ at 25 ^oC.

 $_{\text{Page}}28$

Department of Chemistry

1.5.14 ¹³C-NMR of benzyl (2,3-diiodo-5-methylphenyl)carbamate (12_A) in CDCl₃ at 25 °C.

 ${}_{\rm Page}29$

1.5.15 ¹H-NMR of tert-butyl (2,3-diiodo-5-methylphenyl)carbamate (13_A) in CDCl₃ at 25 °C.

 ${}^{\rm Page}30$

1.5.16 ¹³C-NMR of tert-butyl (2,3-diiodo-5-methylphenyl)carbamate (13_A) in CDCl₃ at 25 °C.

Page31

1.5.17 ¹H-NMR of ethyl (5-fluoro-2,3-diiodophenyl)carbamate (15_A) in CDCl₃ at 25 °C.

 ${}^{\rm Page}32$

1.5.18¹³C-NMR of ethyl (5-fluoro-2,3-diiodophenyl)carbamate (15_A) in CDCl₃ at 25 °C.

 ${}^{\rm Page}33$

1.5.19 ¹H-NMR of benzyl (5-fluoro-2,3-diiodophenyl)carbamate (16_A) in CDCl₃ at 25 ^oC.

 $_{\text{Page}}34$

1.5.21 ¹H-NMR of ethyl (5-chloro-2,3-diiodophenyl)carbamate (17_A) in CDCl₃ at 25 °C.

 $_{Page}36$

• -
1.5.22 ¹³C-NMR of ethyl (5-chloro-2,3-diiodophenyl)carbamate (17_A) in CDCl₃ at 25 °C.

R. M. Al-Zoubi et. al.

1.5.23 ¹H-NMR of benzyl (5-chloro-2,3-diiodophenyl)carbamate (18_A) in CDCl₃ at 25 ^oC.

 $_{\text{Page}}38$

1.5.24 ¹³C-NMR of benzyl (5-chloro-2,3-diiodophenyl)carbamate (18_A) in CDCl₃ at 25 °C.

 ${}_{\rm Page}39$

1.5.25 ¹H-NMR of ethyl (5-bromo-2,3-diiodophenyl)carbamate (20_A) in CDCl₃ at 25 °C.

 $_{\rm Page}40$

1.5.26 ¹³C-NMR of ethyl (5-bromo-2,3-diiodophenyl)carbamate (20_A) in CDCl₃ at 25 °C.

 $P_{age}41$

1.5.27 ¹H-NMR of benzyl (5-bromo-2,3-diiodophenyl)carbamate (21_A) in CDCl₃ at 25 ^oC.

 $P_{age}42$

1.5.28 ¹³C-NMR of benzyl (5-bromo-2,3-diiodophenyl)carbamate (21_A) in CDCl₃ at 25 °C.

 ${}_{\rm Page}43$

1.5.29 ¹H-NMR of methyl (2,3-diiodo-5-methoxyphenyl)carbamate (22_A) in CDCl₃ at 25 °C.

 $_{Page}44$

1.5.30 ¹³C-NMR of methyl (2,3-diiodo-5-methoxyphenyl)carbamate (22_A) in CDCl₃ at 25 °C.

Page45

1.5.31 ¹H-NMR of ethyl (2,3-diiodo-5-methoxyphenyl)carbamate (23_A) in CDCl₃ at 25 °C.

 $P_{age}46$

1.5.32 ¹³C-NMR of ethyl (2,3-diiodo-5-methoxyphenyl)carbamate (23_A) in CDCl₃ at 25 °C.

Page47

1.5.33 ¹H-NMR of benzyl (2,3-diiodo-5-methoxyphenyl)carbamate (24_A) in CDCl₃ at 25 ^oC.

 $_{\rm Page}48$

1.5.34 ¹³C-NMR of benzyl (2,3-diiodo-5-methoxyphenyl)carbamate (24_A) in CDCl₃ at 25 °C.

R. M. Al-Zoubi et. al.

 $_{Page}49$

1.5.35 ¹H-NMR of tert-butyl (2,3-diiodo-5-methoxyphenyl)carbamate (26_A) in CDCl₃ at 25 °C.

1.5.36 ¹³C-NMR of tert-butyl (2,3-diiodo-5-methoxyphenyl)carbamate (26_A) in CDCl₃ at 25 °C.

 ${}^{\rm Page}52$

1.5.38 ¹³C-NMR of methyl 3-((ethoxycarbonyl)amino)-4,5-diiodobenzoate (27_A) in CDCl₃ at 25 °C.

 ${}^{\rm Page} 53$

1.5.39 ¹H-NMR of ethyl (3-bromo-2-iodophenyl)carbamate (28_A) in CDCl₃ at 25 °C.

 $P_{age}54$

1.5.40 ¹³C-NMR of ethyl (3-bromo-2-iodophenyl)carbamate (28_A) in CDCl₃ at 25 °C.

 ${}^{\rm Page}55$

1.5.41 ¹H-NMR of ethyl (3-chloro-2-iodophenyl)carbamate (29_A) in CDCl₃ at 25 °C.

Page 56

Department of Chemistry

1.5.42 ¹³C-NMR of ethyl (3-chloro-2-iodophenyl)carbamate (29_A) in CDCl₃ at 25 °C.

1.5.43 ¹H-NMR of benzyl (5-chloro-3-iodo-2-((4-methoxyphenyl)ethynyl)phenyl)carbamate (34) in CDCl₃ at 25 °C.

1.5.44 ¹³C-NMR of benzyl (5-chloro-3-iodo-2-((4-methoxyphenyl)ethynyl)phenyl)carbamate (34) in CDCl₃ at 25 °C.

1.5.45 ¹H-NMR of benzyl (5-chloro-2,3-bis((4-methoxyphenyl)ethynyl)phenyl)carbamate (bis-coupling pdt) in CDCl₃ at 25 °C.

Page 60

1.5.46 ¹³C-NMR benzyl (5-chloro-2,3-bis((4-methoxyphenyl)ethynyl)phenyl)of carbamate (bis-coupling pdt) in CDCl₃ at 25 °C.

Page 61

R. M. Al-Zoubi et. al.

Department of Chemistry

1.5.48 ¹³C-NMR of benzyl (4-chloro-6-iodo-4'-methoxy-[1,1'-biphenyl]-2-yl)carbamate (35) in CDCl₃ at 25 °C.

Page 63

1.5.49 ¹H-NMR of benzyl (5'-chloro-4,4"-dimethoxy-[1,1':2',1"-terphenyl]-3'yl)carbamate (bis-coupling pdt) in CDCl₃ at 25 °C.

1.5.50 ¹³C-NMR of benzyl (5'-chloro-4,4"-dimethoxy-[1,1':2',1"-terphenyl]-3'yl)carbamate (bis-coupling pdt) in CDCl₃ at 25 °C.

Page 65

1.6.2 X-ray data of ethyl (2,3-diiodophenyl)carbamate (6A)

STRUCTURE REPORT

XCL Code:	JUS1711	Date:	20 October 2017
Compound: Formula:	Ethyl (2,3-diiodophenyl)carbamate C9H9I2NO2		
Supervisor: Crystallographer:	R. M. Al-Zoubi, Jordan University of R. McDonald	Science	and Technology

Figure Legends

- **Figure 1.** Perspective view of the ethyl (2,3-diiodophenyl)carbamate molecule showing the atom labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 30% probability level. Hydrogen atoms are shown with arbitrarily small thermal parameters.
- **Figure 2.** Alternate view of the molecule.

List of Tables

- Table 1.
 Crystallographic Experimental Details
- **Table 2.** Atomic Coordinates and Equivalent Isotropic Displacement Parameters
- Table 3.
 Selected Interatomic Distances
- Table 4.
 Selected Interatomic Angles
- **Table 5.**Torsional Angles
- **Table 6.** Anisotropic Displacement Parameters

Table 7. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

Table 1. Crystallographic Experimental	Details
--	---------

A. Crystal Data		
formula	C9H9I2NO2	
formula weight	416.97	
crystal dimensions (mm)	$0.40\times0.18\times0.13$	
crystal system	monoclinic	
space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	
unit cell parameters ^a		
<i>a</i> (Å)	12.230 (3)	
<i>b</i> (Å)	13.783 (4)	
<i>c</i> (Å)	7.0214 (18)	
β (deg)	99.948 (3)	
$V(Å^3)$	1165.8 (5)	
Ζ	4	
ρ_{calcd} (g cm ⁻³)	2.376	
$\mu (\text{mm}^{-1})$	5.371	

B. Data Collection and Refinement Conditions

diffractometer	Bruker PLATFORM/APEX II CCD ^b
radiation (λ [Å])	graphite-monochromated Mo K α (0.71073)
temperature (°C)	-80
scan type	ω scans (0.3°) (15 s exposures)
data collection 2θ limit (deg)	56.54
total data collected	9415 (-16 $\leq h \leq$ 16, -18 $\leq k \leq$ 18, -9 $\leq l \leq$ 9)
independent reflections	2585 ($R_{\text{int}} = 0.0452$)
number of observed reflections (NO)	2403 $[F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	Patterson/structure expansion (<i>DIRDIF</i> -2008 ^c)
refinement method	full-matrix least-squares on F^2 (SHELXL-2014 ^d)
absorption correction method	multi-scan (TWINABS)
range of transmission factors	0.3742-0.2287
data/restraints/parameters	2585 / 0 / 128
goodness-of-fit $(S)^e$ [all data]	1.120
final <i>R</i> indices ^{<i>f</i>}	
$R_1 \left[F_0^2 \ge 2\sigma (F_0^2) \right]$	0.0385
wR_2 [all data]	0.1126
largest difference peak and hole	1.058 and -1.218 e Å ⁻³

^{*a*}Obtained from least-squares refinement of 4513 reflections with $4.50^{\circ} < 2\theta < 56.44^{\circ}$.

 $_{\rm Page}71$

(continued)

Table 1. Crystallographic Experimental Details (continued)

- ^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker. The crystal used for data collection was found to display non-merohedral twinning. Both components of the twin were indexed with the program *CELL_NOW* (Bruker AXS Inc., Madison, WI, 2004). The second twin component can be related to the first component by 180° rotation about the [1 0 0] axis in both real and reciprocal space. Integrated intensities for the reflections from the two components were written into a *SHELXL-2014* HKLF 5 reflection file with the data integration program *SAINT* (version 8.38A), using all reflection data (exactly overlapped, partially overlapped and non-overlapped). The refined value of the twin fraction (*SHELXL-2014* BASF parameter) was 0.1855(14).
- ^cBeurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Granda, S.; Gould, R. O. (2008). The *DIRDIF-2008* program system. Crystallography Laboratory, Radboud University Nijmegen, The Netherlands.
- dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.
- ${}^{e}S = [\Sigma w(F_0{}^2 F_c{}^2)^2/(n p)]^{1/2}$ (*n* = number of data; *p* = number of parameters varied; *w* = $[\sigma^2(F_0{}^2) + (0.0631P)^2 + 3.7884P]^{-1}$ where $P = [Max(F_0{}^2, 0) + 2F_c{}^2]/3)$.
- $fR_1 = \Sigma ||F_0| |F_c|| / \Sigma |F_0|; \ wR_2 = [\Sigma w (F_0^2 F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$
| Atom | x | у | Z. | $U_{\rm eq}$, Å ² |
|------|------------|------------|------------|-------------------------------|
| I1 | 0.33053(4) | 0.00919(3) | 0.13582(7) | 0.03223(14)* |
| I2 | 0.06847(4) | 0.13694(4) | 0.01482(8) | 0.03922(16)* |
| 01 | 0.6467(5) | 0.2903(4) | 0.3380(12) | 0.0575(19)* |
| O2 | 0.6969(4) | 0.1331(3) | 0.3480(9) | 0.0369(12)* |
| Ν | 0.5216(5) | 0.1666(4) | 0.2407(10) | 0.0344(13)* |
| C1 | 0.4204(5) | 0.2164(5) | 0.1846(9) | 0.0272(13)* |
| C2 | 0.3217(5) | 0.1617(4) | 0.1341(9) | 0.0249(11)* |
| C3 | 0.2209(5) | 0.2097(5) | 0.0822(9) | 0.0276(13)* |
| C4 | 0.2164(6) | 0.3110(5) | 0.0764(10) | 0.0304(13)* |
| C5 | 0.3135(6) | 0.3630(4) | 0.1274(10) | 0.0302(14)* |
| C6 | 0.4148(6) | 0.3177(4) | 0.1792(10) | 0.0294(14)* |
| C7 | 0.6237(6) | 0.2059(5) | 0.3105(11) | 0.0316(15)* |
| C8 | 0.8099(6) | 0.1622(6) | 0.4241(17) | 0.050(2)* |
| C9 | 0.8813(6) | 0.0755(6) | 0.4564(16) | 0.048(2)* |

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})].$

Atom1	Atom2	Distance	Atom1	Atom2	Distance
I1	C2	2.105(6)	C1	C2	1.415(9)
I2	C3	2.098(7)	C1	C6	1.398(9)
01	C7	1.205(9)	C2	C3	1.391(9)
O2	C7	1.340(8)	C3	C4	1.398(9)
O2	C8	1.450(9)	C4	C5	1.381(10)
Ν	C1	1.412(9)	C5	C6	1.379(10)
Ν	C7	1.371(9)	C8	C9	1.475(11)

Table 3.	Selected	Interatomic	Distances ((Å)
----------	----------	-------------	-------------	-----

 Table 4.
 Selected Interatomic Angles (deg)

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
C7	O2	C8	115.3(5)	I2	C3	C4	116.2(5)
C1	Ν	C7	127.5(6)	C2	C3	C4	120.8(6)
Ν	C1	C2	118.6(6)	C3	C4	C5	118.9(6)
Ν	C1	C6	122.0(6)	C4	C5	C6	121.8(6)
C2	C1	C6	119.4(6)	C1	C6	C5	119.8(6)
I1	C2	C1	119.4(5)	01	C7	O2	124.2(7)
I1	C2	C3	121.2(5)	01	C7	Ν	127.7(6)
C1	C2	C3	119.4(6)	O2	C7	Ν	108.1(5)
I2	C3	C2	123.0(5)	O2	C8	C9	109.5(6)

 Table 5.
 Torsional Angles (deg)

Atom1	Atom2	Atom3	Atom4	Angle	Atom1	Atom2	Atom3	Atom4	Angle
C8	O2	C7	O1	-0.8(12)	Ν	C1	C6	C5	-178.6(7)
C8	O2	C7	Ν	-179.8(8)	C2	C1	C6	C5	0.8(10)
C7	O2	C8	C9	-179.4(8)	I1	C2	C3	I2	3.2(7)
C7	Ν	C1	C2	-173.8(7)	I1	C2	C3	C4	-178.2(5)
C7	Ν	C1	C6	5.6(12)	C1	C2	C3	I2	-177.6(5)
C1	Ν	C7	O 1	0.3(14)	C1	C2	C3	C4	1.0(10)
C1	Ν	C7	O2	179.3(7)	I2	C3	C4	C5	177.3(5)
Ν	C1	C2	I1	-2.0(8)	C2	C3	C4	C5	-1.4(10)
Ν	C1	C2	C3	178.7(6)	C3	C4	C5	C6	1.6(11)
C6	C1	C2	I1	178.6(5)	C4	C5	C6	C1	-1.3(11)
C6	C1	C2	C3	-0.7(9)					

U_{11}	U_{22}	U ₃₃	U_{23}	<i>U</i> ₁₃	U_{12}
0.0314(2)	0.0209(2)	0.0438(3)	-0.00102(16)	0.0048(2)	-0.00065(15)
0.0273(2)	0.0406(3)	0.0487(3)	0.0020(2)	0.0039(2)	-0.00115(17)
0.032(3)	0.029(3)	0.104(6)	-0.002(3)	-0.008(3)	0.005(2)
0.029(2)	0.024(2)	0.055(3)	-0.006(2)	-0.002(2)	0.0011(17)
0.024(3)	0.023(3)	0.055(4)	-0.005(3)	0.001(3)	0.003(2)
0.029(3)	0.025(3)	0.027(3)	0.002(2)	0.004(2)	0.002(2)
0.029(3)	0.024(3)	0.022(3)	-0.004(2)	0.005(2)	0.000(2)
0.030(3)	0.031(3)	0.022(3)	0.002(2)	0.004(2)	0.001(2)
0.037(3)	0.030(3)	0.025(3)	0.001(3)	0.006(3)	0.010(3)
0.043(4)	0.018(3)	0.027(3)	-0.001(2)	-0.001(3)	0.005(2)
0.036(3)	0.017(3)	0.034(3)	-0.007(2)	0.004(3)	-0.004(2)
0.032(3)	0.017(3)	0.046(4)	-0.001(3)	0.007(3)	0.004(2)
0.025(3)	0.036(4)	0.084(7)	-0.004(5)	-0.007(4)	-0.004(3)
0.027(3)	0.042(4)	0.070(6)	0.008(4)	-0.001(4)	-0.003(3)
	U_{11} 0.0314(2) 0.0273(2) 0.032(3) 0.029(2) 0.024(3) 0.029(3) 0.029(3) 0.030(3) 0.037(3) 0.037(3) 0.043(4) 0.036(3) 0.032(3) 0.025(3) 0.027(3)	$\begin{array}{cccc} U_{11} & U_{22} \\ 0.0314(2) & 0.0209(2) \\ 0.0273(2) & 0.0406(3) \\ 0.032(3) & 0.029(3) \\ 0.029(2) & 0.024(2) \\ 0.024(3) & 0.023(3) \\ 0.029(3) & 0.025(3) \\ 0.029(3) & 0.024(3) \\ 0.030(3) & 0.031(3) \\ 0.037(3) & 0.030(3) \\ 0.036(3) & 0.017(3) \\ 0.032(3) & 0.017(3) \\ 0.025(3) & 0.036(4) \\ 0.027(3) & 0.042(4) \\ \end{array}$	$\begin{array}{ccccccc} U_{11} & U_{22} & U_{33} \\ 0.0314(2) & 0.0209(2) & 0.0438(3) \\ 0.0273(2) & 0.0406(3) & 0.0487(3) \\ 0.032(3) & 0.029(3) & 0.104(6) \\ 0.029(2) & 0.024(2) & 0.055(3) \\ 0.024(3) & 0.023(3) & 0.055(4) \\ 0.029(3) & 0.025(3) & 0.027(3) \\ 0.029(3) & 0.024(3) & 0.022(3) \\ 0.030(3) & 0.031(3) & 0.022(3) \\ 0.037(3) & 0.030(3) & 0.025(3) \\ 0.043(4) & 0.018(3) & 0.027(3) \\ 0.036(3) & 0.017(3) & 0.034(3) \\ 0.032(3) & 0.017(3) & 0.046(4) \\ 0.025(3) & 0.042(4) & 0.070(6) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 6. Anisotropic Displacement Parameters $(U_{ij}, Å^2)$

The form of the anisotropic displacement parameter is:

 $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$

				°)
Atom	x	У	Z.	$U_{\rm eq},{\rm A}^2$
H1N	0.518943	0.103033	0.229669	0.041
H4	0.147611	0.343564	0.038111	0.036
H5	0.310489	0.431916	0.126790	0.036
H6	0.480596	0.355214	0.211150	0.035
H8A	0.812049	0.197518	0.547454	0.060
H8B	0.837428	0.206220	0.331462	0.060
H9A	0.957723	0.095215	0.507901	0.057
H9B	0.854241	0.032449	0.549213	0.057
H9C	0.879559	0.041130	0.333736	0.057

Table7.	Derived Atomic	Coordinates and	d Displacement	t Parameters	for Hydrogen	Atoms

1.6.2 X-ray data of ethyl (2,3-diiodo-5-methoxyphenyl)carbamate (23A)

STRUCTURE REPORT

XCL Code:	JUS1710	Date: 20 October 2017
Compound: Formula:	Ethyl (2,3-diiodo-5-methoxyphenyl)ca $C_{10}H_{11}I_2NO_3$	rbamate
Supervisor: Crystallographer:	R. M. Al-Zoubi, Jordan University of R. McDonald	Science and Technology

Figure Legends

- **Figure 1.** Perspective view of one of the two crystallographically-independent molecules of ethyl (2,3-diiodo-5-methoxyphenyl)carbamate (molecule A) showing the atom labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 30% probability level. Hydrogen atoms are shown with arbitrarily small thermal parameters.
- Figure 2. Alternate view of molecule A.
- **Figure 3.** View of the second crystallographically-independent molecule of ethyl (2,3diiodo-5-methoxyphenyl)carbamate (molecule B).
- Figure 4. Alternate view of molecule B.

List of Tables

- Table 1.
 Crystallographic Experimental Details
- Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters
- Table 3.
 Selected Interatomic Distances
- Table 4.
 Selected Interatomic Angles
- Table 5.Torsional Angles
- Table 6.
 Anisotropic Displacement Parameters
- Table 7.
 Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

Table 1.	Crystallographic Experimental Details
----------	---------------------------------------

A. Crystal Data	
formula	C ₁₀ H ₁₁ I ₂ NO ₃
formula weight	447.00
crystal dimensions (mm)	$0.73 \times 0.06 \ge 0.03$
crystal system	triclinic
space group	<i>P</i> 1 (No. 2)
unit cell parameters ^a	
<i>a</i> (Å)	4.7279 (3)
<i>b</i> (Å)	14.6599 (10)
<i>c</i> (Å)	19.2246 (13)
α (deg)	102.2361 (8)
β (deg)	95.5377 (8)
$\gamma(\text{deg})$	92.5611 (9)
$V(Å^3)$	1293.21 (15)
Ζ	4
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	2.296
$\mu (\text{mm}^{-1})$	4.856
-	

B. Data Collection and Refinement Conditions

diffractometer	Bruker D8/APEX II CCD ^b
radiation (λ [Å])	graphite-monochromated Mo K α (0.71073)
temperature (°C)	-100
scan type	ω scans (0.3°) (15 s exposures)
data collection 2θ limit (deg)	56.86
total data collected	11890 (-6 \le <i>h</i> \le 6, -19 \le <i>k</i> \le 19, -25 \le <i>l</i> \le 25)
independent reflections	$6233 \ (R_{\text{int}} = 0.0181)$
number of observed reflections (NO)	5308 $[F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	Patterson/structure expansion (<i>DIRDIF</i> -2008 ^c)
refinement method	full-matrix least-squares on F^2 (SHELXL-2014 ^d)
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.9049–0.2738
data/restraints/parameters	6233 / 0 / 289
goodness-of-fit (S) ^e [all data]	1.060
final <i>R</i> indices ^f	
$R_1 [F_0^2 \ge 2\sigma(F_0^2)]$	0.0272
wR_2 [all data]	0.0665
largest difference peak and hole	0.872 and -0.617 e Å ⁻³

*a*Obtained from least-squares refinement of 8313 reflections with $4.36^{\circ} < 2\theta < 56.18^{\circ}$.

(continued)

 Table 1. Crystallographic Experimental Details (continued)

- ^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.
- ^cBeurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Granda, S.; Gould, R. O. (2008). The *DIRDIF-2008* program system. Crystallography Laboratory, Radboud University Nijmegen, The Netherlands.

dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.

 ${}^{e}S = [\Sigma w(F_0{}^2 - F_c{}^2)^2/(n - p)]^{1/2}$ (*n* = number of data; *p* = number of parameters varied; *w* = $[\sigma^2(F_0{}^2) + (0.0289P)^2 + 1.1161P]^{-1}$ where $P = [Max(F_0{}^2, 0) + 2F_c{}^2]/3)$.

 ${}^{f}\!R_{1} = \Sigma ||F_{\rm o}| - |F_{\rm c}|| / \Sigma |F_{\rm o}|; \ wR_{2} = [\Sigma w (F_{\rm o}^{2} - F_{\rm c}^{2})^{2} / \Sigma w (F_{\rm o}^{4})]^{1/2}.$

(a) Molecule A							
Atom	x	У	Z.	$U_{\rm eq}$, Å ²			
I1	0.53912(5)	0.12949(2)	0.57118(2)	0.03236(7)*			
I2	0.44327(6)	0.35142(2)	0.69200(2)	0.04231(8)*			
O1	-0.2919(5)	0.09634(17)	0.36437(13)	0.0323(5)*			
O2	0.0619(5)	0.00146(16)	0.33413(12)	0.0280(5)*			
O3	-0.2792(5)	0.42087(17)	0.48486(13)	0.0347(6)*			
N1	0.1614(6)	0.1247(2)	0.42307(15)	0.0276(6)*			
C1	0.1228(6)	0.2091(2)	0.47219(17)	0.0245(6)*			
C2	0.2758(6)	0.2281(2)	0.54024(17)	0.0245(6)*			
C3	0.2363(7)	0.3127(3)	0.58741(18)	0.0302(7)*			
C4	0.0500(7)	0.3749(2)	0.56829(18)	0.0313(7)*			
C5	-0.1009(7)	0.3545(2)	0.50035(18)	0.0298(7)*			
C6	-0.0621(7)	0.2721(2)	0.45164(18)	0.0283(7)*			
C7	-0.0468(6)	0.0767(2)	0.37323(17)	0.0248(6)*			
C8	-0.1323(7)	-0.0504(3)	0.27465(18)	0.0334(8)*			
C9	0.0226(10)	-0.1279(3)	0.2350(2)	0.0577(13)*			
C10	-0.4380(8)	0.4027(3)	0.41750(19)	0.0346(8)*			
(b) Molecule	e B						
(b) Molecule Atom	e B x	у	Z	$U_{\rm eq},{ m \AA}^2$			
(b) Molecule Atom I1	e B x 1.10616(5)	y 0.39252(2)	z 0.25632(2)	U _{eq} , Å ² 0.03874(7)*			
(b) Molecula Atom I1 I2	<i>x</i> 1.10616(5) 1.35192(5)	y 0.39252(2) 0.15891(2)	z 0.25632(2) 0.23177(2)	U _{eq} , Å ² 0.03874(7)* 0.03606(7)*			
(b) Molecula Atom I1 I2 O1	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6)	y 0.39252(2) 0.15891(2) 0.39057(19)	z 0.25632(2) 0.23177(2) 0.02905(14)	U _{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)*			
(b) Molecula Atom II I2 O1 O2	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6) 0.3920(6)	y 0.39252(2) 0.15891(2) 0.39057(19) 0.51727(18)	z 0.25632(2) 0.23177(2) 0.02905(14) 0.12029(13)	U _{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)* 0.0400(6)*			
(<i>b</i>) <i>Molecula</i> Atom I1 I2 O1 O2 O3	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6) 0.3920(6) 0.7127(6)	y 0.39252(2) 0.15891(2) 0.39057(19) 0.51727(18) 0.0844(2)	z 0.25632(2) 0.23177(2) 0.02905(14) 0.12029(13) -0.01808(15)	U _{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)* 0.0400(6)* 0.0481(7)*			
(<i>b</i>) <i>Molecula</i> Atom I1 I2 O1 O2 O3 N1	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6) 0.3920(6) 0.7127(6) 0.6481(6)	y 0.39252(2) 0.15891(2) 0.39057(19) 0.51727(18) 0.0844(2) 0.3967(2)	z 0.25632(2) 0.23177(2) 0.02905(14) 0.12029(13) -0.01808(15) 0.12614(16)	U _{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)* 0.0400(6)* 0.0481(7)* 0.0348(7)*			
(<i>b</i>) <i>Molecula</i> Atom I1 I2 O1 O2 O3 N1 C1	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6) 0.3920(6) 0.7127(6) 0.6481(6) 0.7574(7)	y 0.39252(2) 0.15891(2) 0.39057(19) 0.51727(18) 0.0844(2) 0.3967(2) 0.3090(2)	z 0.25632(2) 0.23177(2) 0.02905(14) 0.12029(13) -0.01808(15) 0.12614(16) 0.11395(18)	U_{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)* 0.0400(6)* 0.0481(7)* 0.0348(7)* 0.0287(7)*			
(<i>b</i>) <i>Molecula</i> Atom I1 I2 O1 O2 O3 N1 C1 C2	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6) 0.3920(6) 0.7127(6) 0.6481(6) 0.7574(7) 0.9634(7)	y 0.39252(2) 0.15891(2) 0.39057(19) 0.51727(18) 0.0844(2) 0.3967(2) 0.3090(2) 0.2888(2)	z 0.25632(2) 0.23177(2) 0.02905(14) 0.12029(13) -0.01808(15) 0.12614(16) 0.11395(18) 0.16493(17)	U_{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)* 0.0400(6)* 0.0481(7)* 0.0348(7)* 0.0287(7)* 0.0274(7)*			
(<i>b</i>) <i>Molecula</i> Atom I1 I2 O1 O2 O3 N1 C1 C2 C3	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6) 0.3920(6) 0.7127(6) 0.6481(6) 0.7574(7) 0.9634(7) 1.0734(7)	y 0.39252(2) 0.15891(2) 0.39057(19) 0.51727(18) 0.0844(2) 0.3967(2) 0.3090(2) 0.2888(2) 0.2001(3)	z 0.25632(2) 0.23177(2) 0.02905(14) 0.12029(13) -0.01808(15) 0.12614(16) 0.11395(18) 0.16493(17) 0.15385(18)	U_{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)* 0.0400(6)* 0.0481(7)* 0.0348(7)* 0.0287(7)* 0.0274(7)* 0.0298(7)*			
(<i>b</i>) <i>Molecula</i> Atom I1 I2 O1 O2 O3 N1 C1 C2 C3 C4	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6) 0.3920(6) 0.7127(6) 0.6481(6) 0.7574(7) 0.9634(7) 1.0734(7) 0.9868(7)	y 0.39252(2) 0.15891(2) 0.39057(19) 0.51727(18) 0.0844(2) 0.3967(2) 0.3090(2) 0.2888(2) 0.2001(3) 0.1334(3)	z 0.25632(2) 0.23177(2) 0.02905(14) 0.12029(13) -0.01808(15) 0.12614(16) 0.11395(18) 0.16493(17) 0.15385(18) 0.09263(19)	U_{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)* 0.0400(6)* 0.0481(7)* 0.0287(7)* 0.0287(7)* 0.0274(7)* 0.0298(7)* 0.0329(7)*			
(<i>b</i>) <i>Molecula</i> Atom I1 I2 O1 O2 O3 N1 C1 C2 C3 C4 C5	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6) 0.3920(6) 0.7127(6) 0.6481(6) 0.7574(7) 0.9634(7) 1.0734(7) 0.9868(7) 0.7835(7)	y 0.39252(2) 0.15891(2) 0.39057(19) 0.51727(18) 0.0844(2) 0.3967(2) 0.3090(2) 0.2888(2) 0.2001(3) 0.1334(3) 0.1547(3)	z 0.25632(2) 0.23177(2) 0.02905(14) 0.12029(13) -0.01808(15) 0.12614(16) 0.11395(18) 0.16493(17) 0.15385(18) 0.09263(19) 0.04166(19)	U_{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)* 0.0400(6)* 0.0481(7)* 0.0348(7)* 0.0287(7)* 0.0274(7)* 0.0298(7)* 0.0329(7)* 0.0331(7)*			
(<i>b</i>) <i>Molecula</i> Atom 11 12 01 02 03 N1 C1 C2 C3 C4 C5 C6	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6) 0.3920(6) 0.7127(6) 0.6481(6) 0.7574(7) 0.9634(7) 1.0734(7) 0.9868(7) 0.7835(7) 0.6687(7)	y 0.39252(2) 0.15891(2) 0.39057(19) 0.51727(18) 0.0844(2) 0.3967(2) 0.3090(2) 0.2888(2) 0.2001(3) 0.1334(3) 0.1547(3) 0.2408(3)	z 0.25632(2) 0.23177(2) 0.02905(14) 0.12029(13) -0.01808(15) 0.12614(16) 0.11395(18) 0.16493(17) 0.15385(18) 0.09263(19) 0.04166(19) 0.05189(18)	U_{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)* 0.0400(6)* 0.0481(7)* 0.0287(7)* 0.0287(7)* 0.0274(7)* 0.0298(7)* 0.0329(7)* 0.0331(7)* 0.0319(7)*			
(<i>b</i>) <i>Molecula</i> Atom I1 I2 O1 O2 O3 N1 C1 C2 C3 C4 C5 C6 C7	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6) 0.3920(6) 0.7127(6) 0.6481(6) 0.7574(7) 0.9634(7) 1.0734(7) 0.9868(7) 0.7835(7) 0.6687(7) 0.4398(7)	y 0.39252(2) 0.15891(2) 0.39057(19) 0.51727(18) 0.0844(2) 0.3967(2) 0.3090(2) 0.2888(2) 0.2001(3) 0.1334(3) 0.1547(3) 0.2408(3) 0.4308(3)	z 0.25632(2) 0.23177(2) 0.02905(14) 0.12029(13) -0.01808(15) 0.12614(16) 0.11395(18) 0.16493(17) 0.15385(18) 0.09263(19) 0.04166(19) 0.05189(18) 0.08610(18)	U_{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)* 0.0400(6)* 0.0481(7)* 0.0348(7)* 0.0287(7)* 0.0274(7)* 0.0298(7)* 0.0329(7)* 0.0319(7)* 0.0309(7)*			
(b) Molecula Atom 11 12 01 02 03 N1 C1 C2 C3 C4 C5 C6 C7 C8	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6) 0.3920(6) 0.7127(6) 0.6481(6) 0.7574(7) 0.9634(7) 1.0734(7) 0.9868(7) 0.7835(7) 0.6687(7) 0.4398(7) 0.1818(9)	y 0.39252(2) 0.15891(2) 0.39057(19) 0.51727(18) 0.0844(2) 0.3967(2) 0.3090(2) 0.2888(2) 0.2001(3) 0.1334(3) 0.1547(3) 0.2408(3) 0.4308(3) 0.5648(3)	z 0.25632(2) 0.23177(2) 0.02905(14) 0.12029(13) -0.01808(15) 0.12614(16) 0.11395(18) 0.16493(17) 0.15385(18) 0.09263(19) 0.04166(19) 0.05189(18) 0.08610(18) 0.0829(2)	U_{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)* 0.0400(6)* 0.0481(7)* 0.0287(7)* 0.0287(7)* 0.0274(7)* 0.0298(7)* 0.0329(7)* 0.0319(7)* 0.0309(7)* 0.0403(9)*			
(b) Molecula Atom I1 I2 O1 O2 O3 N1 C1 C2 C3 C4 C5 C6 C7 C8 C9	<i>x</i> 1.10616(5) 1.35192(5) 0.3171(6) 0.3920(6) 0.7127(6) 0.6481(6) 0.7574(7) 0.9634(7) 1.0734(7) 0.9868(7) 0.7835(7) 0.6687(7) 0.4398(7) 0.1818(9) 0.1530(13)	y 0.39252(2) 0.15891(2) 0.39057(19) 0.51727(18) 0.0844(2) 0.3967(2) 0.3090(2) 0.2888(2) 0.2001(3) 0.1334(3) 0.1547(3) 0.2408(3) 0.4308(3) 0.5648(3) 0.6587(3)	z 0.25632(2) 0.23177(2) 0.02905(14) 0.12029(13) -0.01808(15) 0.12614(16) 0.11395(18) 0.16493(17) 0.15385(18) 0.09263(19) 0.04166(19) 0.05189(18) 0.08610(18) 0.0829(2) 0.1289(3)	U_{eq} , Å ² 0.03874(7)* 0.03606(7)* 0.0429(6)* 0.0400(6)* 0.0481(7)* 0.0348(7)* 0.0287(7)* 0.0274(7)* 0.0298(7)* 0.0329(7)* 0.0319(7)* 0.0319(7)* 0.0309(7)* 0.0403(9)* 0.0745(17)*			

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23})$

 $+ 2hla^*c^*U_{13} + 2hka^*b^*U_{12})].$

(a) Molecule A			(ł) Molecule	В
Atom1	Atom2	Distance	Atom1	Atom2	Distance
I1	C2	2.092(3)	I1	C2	2.098(3)
I2	C3	2.100(3)	I2	C3	2.102(3)
01	C7	1.212(4)	01	C7	1.208(4)
O2	C7	1.349(4)	O2	C7	1.339(4)
O2	C8	1.448(4)	O2	C8	1.458(4)
03	C5	1.376(4)	03	C5	1.374(4)
03	C10	1.400(4)	03	C10	1.418(5)
N1	C1	1.419(4)	N1	C1	1.389(4)
N1	C7	1.361(4)	N1	C7	1.368(4)
C1	C2	1.399(4)	C1	C2	1.400(5)
C1	C6	1.391(4)	C1	C6	1.400(5)
C2	C3	1.404(5)	C2	C3	1.404(5)
C3	C4	1.377(5)	C3	C4	1.376(5)
C4	C5	1.393(5)	C4	C5	1.399(5)
C5	C6	1.395(5)	C5	C6	1.379(5)
C8	C9	1.491(5)	C8	C9	1.489(6)

Table 3. Selected Interatomic Distances (Å)

(a)	Molecule A	A			(b) Molect	ule B	
Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
C7	O2	C8	114.2(2)	C7	O2	C8	115.6(3)
C5	O3	C10	118.0(3)	C5	O3	C10	117.9(3)
C1	N1	C7	124.1(3)	C1	N1	C7	129.4(3)
N1	C1	C2	119.2(3)	N1	C1	C2	119.0(3)
N1	C1	C6	119.6(3)	N1	C1	C6	121.7(3)
C2	C1	C6	121.1(3)	C2	C1	C6	119.3(3)
I1	C2	C1	120.2(2)	I1	C2	C1	119.3(2)
I1	C2	C3	121.7(2)	I1	C2	C3	121.0(2)
C1	C2	C3	118.0(3)	C1	C2	C3	119.7(3)
I2	C3	C2	123.1(2)	I2	C3	C2	122.4(2)
I2	C3	C4	115.4(2)	I2	C3	C4	116.6(3)
C2	C3	C4	121.5(3)	C2	C3	C4	120.9(3)
C3	C4	C5	119.6(3)	C3	C4	C5	119.0(3)
03	C5	C4	116.1(3)	O3	C5	C4	114.9(3)
03	C5	C6	123.5(3)	O3	C5	C6	123.8(3)
C4	C5	C6	120.4(3)	C4	C5	C6	121.3(3)
C1	C6	C5	119.4(3)	C1	C6	C5	119.9(3)
01	C7	O2	124.2(3)	01	C7	O2	124.7(3)
01	C7	N1	126.8(3)	01	C7	N1	126.4(3)
O2	C7	N1	109.0(3)	O2	C7	N1	108.9(3)
O2	C8	C9	107.7(3)	O2	C8	C9	108.2(3)

Table 4. Selected Interatomic Angles (deg)

Table 5. Torsional Angles (deg)

	(a) Mole	cule A				(b) M	Iolecule	В	
Atom1	Atom2	Atom3	Atom4	Angle	Atom1	Atom2	Atom3	Atom4	Angle
C8	O2	C7	O1	6.0(4)	C8	O2	C7	01	-2.1(5)
C8	O2	C7	N1	-174.3(3)	C8	O2	C7	N1	177.7(3)
C7	O2	C8	C9	177.3(3)	C7	O2	C8	C9	179.1(4)
C10	O3	C5	C4	-179.2(3)	C10	O3	C5	C4	172.1(3)
C10	O3	C5	C6	2.6(5)	C10	O3	C5	C6	-8.5(6)
C7	N1	C1	C2	147.7(3)	C7	N1	C1	C2	-177.0(3)
C7	N1	C1	C6	-33.4(5)	C7	N1	C1	C6	3.5(6)
C1	N1	C7	01	-2.0(5)	C1	N1	C7	01	-3.6(6)
C1	N1	C7	O2	178.3(3)	C1	N1	C7	O2	176.5(3)
N1	C1	C2	I1	-3.7(4)	N1	C1	C2	I1	-1.5(4)
N1	C1	C2	C3	179.2(3)	N1	C1	C2	C3	179.2(3)
C6	C1	C2	I1	177.4(2)	C6	C1	C2	I1	178.0(2)
C6	C1	C2	C3	0.2(5)	C6	C1	C2	C3	-1.3(5)
N1	C1	C6	C5	179.5(3)	N1	C1	C6	C5	179.7(3)
C2	C1	C6	C5	-1.6(5)	C2	C1	C6	C5	0.2(5)
I1	C2	C3	I2	1.9(4)	I1	C2	C3	I2	6.9(4)
I1	C2	C3	C4	-176.1(3)	I1	C2	C3	C4	-177.6(3)
C1	C2	C3	I2	179.0(2)	C1	C2	C3	I2	-173.8(2)
C1	C2	C3	C4	1.0(5)	C1	C2	C3	C4	1.7(5)
I2	C3	C4	C5	-178.9(3)	I2	C3	C4	C5	174.8(3)
C2	C3	C4	C5	-0.8(5)	C2	C3	C4	C5	-0.9(5)
C3	C4	C5	O3	-178.9(3)	C3	C4	C5	O3	179.2(3)
C3	C4	C5	C6	-0.6(5)	C3	C4	C5	C6	-0.2(5)
O3	C5	C6	C1	180.0(3)	O3	C5	C6	C1	-178.8(3)
C4	C5	C6	C1	1.8(5)	C4	C5	C6	C1	0.6(5)

 $_{\rm Page}90$

Table 6.	Anisotropic Displacement Parameters	$(U_{ij},$	Å2))
----------	-------------------------------------	------------	-----	---

(a) Mole	cule A					
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
I1	0.03298(12)	0.03113(13)	0.03262(12)	0.00822(9)	-0.00309(9)	0.00664(9)
I2	0.04820(15)	0.04178(15)	0.03004(13)	-0.00189(10)	-0.00965(10)	0.00530(11)
01	0.0196(11)	0.0366(14)	0.0372(13)	0.0003(11)	-0.0001(9)	0.0063(10)
O2	0.0267(11)	0.0252(12)	0.0286(12)	-0.0005(9)	-0.0029(9)	0.0058(9)
O3	0.0392(13)	0.0256(13)	0.0378(14)	0.0026(10)	-0.0004(11)	0.0154(11)
N1	0.0204(12)	0.0283(15)	0.0310(14)	-0.0010(12)	0.0023(11)	0.0065(11)
C1	0.0220(14)	0.0253(16)	0.0258(15)	0.0040(13)	0.0037(12)	0.0025(12)
C2	0.0208(14)	0.0254(16)	0.0278(16)	0.0083(13)	0.0002(12)	0.0021(12)
C3	0.0245(15)	0.0367(19)	0.0261(16)	0.0016(14)	-0.0009(13)	0.0007(14)
C4	0.0339(17)	0.0276(18)	0.0294(17)	-0.0006(14)	0.0031(14)	0.0041(14)
C5	0.0309(17)	0.0285(18)	0.0295(17)	0.0047(14)	0.0013(13)	0.0078(14)
C6	0.0272(16)	0.0305(18)	0.0264(16)	0.0046(13)	0.0017(13)	0.0017(13)
C7	0.0236(15)	0.0278(17)	0.0227(15)	0.0035(13)	0.0042(12)	0.0044(13)
C8	0.0334(18)	0.0321(19)	0.0293(17)	-0.0022(14)	-0.0034(14)	0.0016(15)
C9	0.058(3)	0.050(3)	0.048(3)	-0.021(2)	-0.016(2)	0.022(2)
C10	0.0366(19)	0.0318(19)	0.0356(19)	0.0078(15)	0.0001(15)	0.0111(15)
(b) Mole	cule B					
(b) Mole Atom	cule B U ₁₁	<i>U</i> ₂₂	<i>U</i> 33	<i>U</i> ₂₃	<i>U</i> ₁₃	U_{12}
(b) Moles Atom I1	<i>cule B</i> U ₁₁ 0.04131(14)	<i>U</i> ₂₂ 0.04106(15)	U_{33} 0.02931(12)	U_{23} 0.00028(10)	U_{13} -0.00483(10)	U_{12} 0.00784(11)
(b) Mole Atom I1 I2	<i>cule B</i> U ₁₁ 0.04131(14) 0.03280(12)	U_{22} 0.04106(15) 0.03950(14)	<i>U</i> ₃₃ 0.02931(12) 0.03841(13)	<i>U</i> ₂₃ 0.00028(10) 0.01488(11)	<i>U</i> ₁₃ -0.00483(10) 0.00004(9)	<i>U</i> ₁₂ 0.00784(11) 0.00719(10)
(<i>b</i>) <i>Moles</i> Atom I1 I2 O1	<i>cule B</i> <i>U</i> ₁₁ 0.04131(14) 0.03280(12) 0.0486(15)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12)
(<i>b</i>) <i>Moles</i> Atom I1 I2 O1 O2	cule B U_{11} 0.04131(14) 0.03280(12) 0.0486(15) 0.0493(15)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15) 0.0352(14)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14) 0.0331(13)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12) 0.0038(11)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12) -0.0046(11)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12) 0.0146(12)
(<i>b</i>) Moles Atom I1 I2 O1 O2 O3	cule B U_{11} 0.04131(14) 0.03280(12) 0.0486(15) 0.0493(15) 0.0521(17)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15) 0.0352(14) 0.0392(16)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14) 0.0331(13) 0.0433(16)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12) 0.0038(11) -0.0074(12)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12) -0.0046(11) -0.0103(13)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12) 0.0146(12) 0.0120(13)
(b) Moles Atom I1 I2 O1 O2 O3 N1	cule B U_{11} 0.04131(14) 0.03280(12) 0.0486(15) 0.0493(15) 0.0521(17) 0.0410(16)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15) 0.0352(14) 0.0392(16) 0.0317(16)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14) 0.0331(13) 0.0433(16) 0.0282(15)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12) 0.0038(11) -0.0074(12) 0.0011(12)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12) -0.0046(11) -0.0103(13) -0.0051(12)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12) 0.0146(12) 0.0120(13) 0.0089(13)
(b) Moles Atom I1 I2 O1 O2 O3 N1 C1	cule B U_{11} 0.04131(14) 0.03280(12) 0.0486(15) 0.0493(15) 0.0521(17) 0.0410(16) 0.0289(16)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15) 0.0352(14) 0.0392(16) 0.0317(16) 0.0305(18)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14) 0.0331(13) 0.0433(16) 0.0282(15) 0.0287(17)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12) 0.0038(11) -0.0074(12) 0.0011(12) 0.0091(14)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12) -0.0046(11) -0.0103(13) -0.0051(12) 0.0063(13)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12) 0.0146(12) 0.0120(13) 0.0089(13) 0.0049(14)
(b) Moles Atom I1 I2 O1 O2 O3 N1 C1 C2	cule B U_{11} 0.04131(14) 0.03280(12) 0.0486(15) 0.0493(15) 0.0521(17) 0.0410(16) 0.0289(16) 0.0257(15)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15) 0.0352(14) 0.0392(16) 0.0317(16) 0.0305(18) 0.0301(18)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14) 0.0331(13) 0.0433(16) 0.0282(15) 0.0287(17) 0.0253(16)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12) 0.0038(11) -0.0074(12) 0.0011(12) 0.0091(14) 0.0051(13)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12) -0.0046(11) -0.0103(13) -0.0051(12) 0.0063(13) 0.0010(12)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12) 0.0146(12) 0.0120(13) 0.0089(13) 0.0049(14) -0.0011(13)
(b) Moles Atom I1 I2 O1 O2 O3 N1 C1 C2 C3	cule B U_{11} 0.04131(14) 0.03280(12) 0.0486(15) 0.0493(15) 0.0521(17) 0.0410(16) 0.0289(16) 0.0257(15) 0.0257(16)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15) 0.0352(14) 0.0392(16) 0.0317(16) 0.0305(18) 0.0301(18) 0.0361(19)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14) 0.0331(13) 0.0433(16) 0.0282(15) 0.0287(17) 0.0253(16) 0.0301(17)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12) 0.0038(11) -0.0074(12) 0.0011(12) 0.0091(14) 0.0051(13) 0.0133(15)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12) -0.0046(11) -0.0103(13) -0.0051(12) 0.0063(13) 0.0010(12) 0.0019(13)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12) 0.0146(12) 0.0120(13) 0.0089(13) 0.0049(14) -0.0011(13) 0.0021(14)
(b) Molect Atom I1 I2 O1 O2 O3 N1 C1 C2 C3 C4	cule B U_{11} 0.04131(14) 0.03280(12) 0.0486(15) 0.0493(15) 0.0521(17) 0.0410(16) 0.0289(16) 0.0257(15) 0.0257(16) 0.0337(18)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15) 0.0352(14) 0.0392(16) 0.0317(16) 0.0305(18) 0.0301(18) 0.0361(19) 0.0293(18)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14) 0.0331(13) 0.0433(16) 0.0282(15) 0.0287(17) 0.0253(16) 0.0301(17) 0.0345(18)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12) 0.0038(11) -0.0074(12) 0.0011(12) 0.0091(14) 0.0051(13) 0.0133(15) 0.0049(15)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12) -0.0046(11) -0.0103(13) -0.0051(12) 0.0063(13) 0.0010(12) 0.0019(13) 0.0014(14)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12) 0.0146(12) 0.0120(13) 0.0089(13) 0.0049(14) -0.0011(13) 0.0021(14) 0.0049(14)
(b) Moles Atom I1 I2 O1 O2 O3 N1 C1 C2 C3 C4 C5	cule B U_{11} 0.04131(14) 0.03280(12) 0.0486(15) 0.0493(15) 0.0521(17) 0.0410(16) 0.0289(16) 0.0257(15) 0.0257(16) 0.0337(18) 0.0305(17)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15) 0.0352(14) 0.0392(16) 0.0317(16) 0.0305(18) 0.0301(18) 0.0361(19) 0.0293(18) 0.0336(19)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14) 0.0331(13) 0.0433(16) 0.0282(15) 0.0287(17) 0.0253(16) 0.0301(17) 0.0345(18) 0.0320(18)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12) 0.0038(11) -0.0074(12) 0.0011(12) 0.0091(14) 0.0051(13) 0.0133(15) 0.0049(15) 0.0000(15)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12) -0.0046(11) -0.0103(13) -0.0051(12) 0.0063(13) 0.0010(12) 0.0019(13) 0.0014(14) 0.0025(14)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12) 0.0146(12) 0.0120(13) 0.0089(13) 0.0049(14) -0.0011(13) 0.0021(14) 0.0036(14)
(b) Moles Atom I1 I2 O1 O2 O3 N1 C1 C2 C3 C4 C5 C6	cule B U_{11} 0.04131(14) 0.03280(12) 0.0486(15) 0.0493(15) 0.0521(17) 0.0521(17) 0.0257(16) 0.0257(16) 0.0305(17) 0.0311(17)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15) 0.0352(14) 0.0392(16) 0.0317(16) 0.0305(18) 0.0301(18) 0.0361(19) 0.0293(18) 0.0336(19) 0.0361(19)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14) 0.0331(13) 0.0433(16) 0.0282(15) 0.0287(17) 0.0253(16) 0.0301(17) 0.0345(18) 0.0320(18) 0.0268(16)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12) 0.0038(11) -0.0074(12) 0.0011(12) 0.0091(14) 0.0051(13) 0.0133(15) 0.0049(15) 0.0000(15) 0.0047(14)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12) -0.0046(11) -0.0103(13) -0.0051(12) 0.0063(13) 0.0010(12) 0.0019(13) 0.0014(14) 0.0025(14) -0.0009(13)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12) 0.0146(12) 0.0120(13) 0.0089(13) 0.0049(14) -0.0011(13) 0.0021(14) 0.0049(14) 0.0036(14) 0.0040(14)
(b) Moles Atom I1 I2 O1 O2 O3 N1 C1 C2 C3 C4 C5 C6 C7	cule B U_{11} 0.04131(14) 0.03280(12) 0.0486(15) 0.0493(15) 0.0521(17) 0.0410(16) 0.0257(15) 0.0257(16) 0.0337(18) 0.0305(17) 0.0311(17) 0.0304(17)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15) 0.0352(14) 0.0392(16) 0.0317(16) 0.0305(18) 0.0301(18) 0.0361(19) 0.0361(19) 0.0361(19) 0.0336(19)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14) 0.0331(13) 0.0433(16) 0.0282(15) 0.0287(17) 0.0253(16) 0.0301(17) 0.0345(18) 0.0320(18) 0.0268(16) 0.0299(17)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12) 0.0038(11) -0.0074(12) 0.0011(12) 0.0091(14) 0.0051(13) 0.0033(15) 0.0049(15) 0.00047(14) 0.0084(15)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12) -0.0046(11) -0.0103(13) -0.0051(12) 0.0063(13) 0.0010(12) 0.0019(13) 0.0014(14) 0.0025(14) -0.0009(13) 0.0038(14)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12) 0.0146(12) 0.0120(13) 0.0089(13) 0.0049(14) -0.0011(13) 0.0021(14) 0.0049(14) 0.0036(14) 0.0040(14) 0.0057(14)
(b) Moles Atom I1 I2 O1 O2 O3 N1 C1 C2 C3 C4 C5 C6 C7 C8	cule B U_{11} 0.04131(14) 0.03280(12) 0.0486(15) 0.0493(15) 0.0521(17) 0.0410(16) 0.0257(15) 0.0257(16) 0.0305(17) 0.0311(17) 0.0304(17) 0.052(2)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15) 0.0352(14) 0.0392(16) 0.0317(16) 0.0305(18) 0.0301(18) 0.0361(19) 0.0336(19) 0.0336(19) 0.038(2)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14) 0.0331(13) 0.0433(16) 0.0282(15) 0.0287(17) 0.0253(16) 0.0301(17) 0.0345(18) 0.0320(18) 0.0268(16) 0.0299(17) 0.0312(19)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12) 0.0038(11) -0.0074(12) 0.0011(12) 0.0091(14) 0.0051(13) 0.0133(15) 0.0049(15) 0.0049(15) 0.0047(14) 0.0084(15) 0.0098(16)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12) -0.0046(11) -0.0103(13) -0.0051(12) 0.0063(13) 0.0010(12) 0.0019(13) 0.0014(14) 0.0025(14) -0.0009(13) 0.0038(14) -0.0006(16)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12) 0.0146(12) 0.0120(13) 0.0089(13) 0.0049(14) -0.0011(13) 0.0021(14) 0.0049(14) 0.0036(14) 0.0040(14) 0.0057(14) 0.0100(18)
(b) Moles Atom I1 I2 O1 O2 O3 N1 C1 C2 C3 C4 C5 C6 C7 C8 C9	cule B U_{11} 0.04131(14) 0.03280(12) 0.0486(15) 0.0493(15) 0.0521(17) 0.0410(16) 0.0289(16) 0.0257(15) 0.0257(16) 0.0337(18) 0.0305(17) 0.0311(17) 0.0304(17) 0.052(2) 0.104(4)	U_{22} 0.04106(15) 0.03950(14) 0.0396(15) 0.0352(14) 0.0392(16) 0.0317(16) 0.0305(18) 0.0301(18) 0.0361(19) 0.0361(19) 0.0361(19) 0.0361(19) 0.0361(19) 0.0361(19) 0.0361(19) 0.038(2) 0.050(3)	U_{33} 0.02931(12) 0.03841(13) 0.0349(14) 0.0331(13) 0.0433(16) 0.0282(15) 0.0287(17) 0.0253(16) 0.0301(17) 0.0345(18) 0.0320(18) 0.0268(16) 0.0299(17) 0.0312(19) 0.058(3)	U_{23} 0.00028(10) 0.01488(11) 0.0001(12) 0.0038(11) -0.0074(12) 0.0011(12) 0.0091(14) 0.0051(13) 0.0049(15) 0.0049(15) 0.0047(14) 0.0084(15) 0.0098(16) -0.004(2)	U_{13} -0.00483(10) 0.00004(9) -0.0100(12) -0.0046(11) -0.0103(13) -0.0051(12) 0.0063(13) 0.0010(12) 0.0019(13) 0.0014(14) 0.0025(14) -0.0009(13) 0.0038(14) -0.0006(16) -0.026(3)	U_{12} 0.00784(11) 0.00719(10) 0.0134(12) 0.0146(12) 0.0120(13) 0.0089(13) 0.0049(14) -0.0011(13) 0.0021(14) 0.0049(14) 0.0036(14) 0.0040(14) 0.0057(14) 0.0100(18) 0.037(3)

The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$

R. M. Al-Zoubi, W. K. Al-Jammal and R. McDonald

Atom	x	У	Z.	$U_{\rm eq},{ m \AA}^2$
H1NA	0.330437	0.101959	0.424953	0.033
H4A	0.024492	0.431387	0.601218	0.038
H6A	-0.161099	0.259045	0.404849	0.034
H8A	-0.196534	-0.008898	0.242665	0.040
H8B	-0.301585	-0.076151	0.292416	0.040
H9A	-0.104193	-0.164274	0.194286	0.069
H9B	0.189310	-0.101629	0.217515	0.069
H9C	0.084669	-0.168621	0.267072	0.069
H10A	-0.554847	0.455358	0.413676	0.041
H10B	-0.308535	0.394547	0.380119	0.041
H10C	-0.561748	0.345555	0.411556	0.041
H1NB	0.723868	0.436108	0.165334	0.042
H4B	1.063896	0.073778	0.085092	0.039
H6B	0.529541	0.253741	0.016853	0.038
H8C	-0.003805	0.527964	0.073510	0.048
H8D	0.244254	0.571566	0.036449	0.048
H9D	0.012327	0.691805	0.104635	0.089
H9E	0.090168	0.651255	0.174603	0.089
H9F	0.337363	0.694705	0.137670	0.089
H10D	0.454851	0.041595	-0.107371	0.056
H10E	0.308633	0.103802	-0.043541	0.056
H10F	0.524755	0.152433	-0.085998	0.056

Table 7. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms