Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information for:

Synthesis of Novel *meta*-Benzothiazole and Benzimidazole Functionalised Ni(II)-POCOP Pincer Complexes. Efficient Catalysts in the Production of Diarylketones

Antonio A. Castillo-García,^a Lucero González-Sebastián,^{b,*} Leticia Lomas-Romero,^b Simon Hernandez-Ortega,^a Ruben A. Toscano^a and David Morales-Morales^{a,*} ^aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México. ^bDepartamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de México, C.P. 09340, México. *Corresponding author. Tel.: +52 55 56224514; fax: +52 55 56162217.

E-mail address: damor@unam.mx (D. Morales-Morales)

INDEX

I.	¹ H and ¹³ C{ ¹ H} NMR spectra of proligands (P1 and P2)	SI-2
II.	³¹ P{ ¹ H} NMR spectra of unpurified phosphinite pincer ligands (L1a, L1b, and L2b)	L2a SI-4
III.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of complex 1a	SI-6
IV.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of complex 1b	SI-8
V.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of complex 2a	SI-10
VI.	¹ H, ¹³ C{ ¹ H} and ³¹ P{ ¹ H} NMR spectra of complex 2b	SI-12
VII.	¹ H and ¹³ C NMR data for compounds 3a -3p	SI-13

Figure SI3. ¹H NMR spectrum of **P2**

Figure SI4. ¹³C{¹H} NMR spectrum of **P2**

Figure SI5. ³¹P{¹H} NMR spectrum of L1a

Figure SI6. ³¹P{¹H} NMR spectrum of **L1b**

Figure SI9. ¹H NMR spectrum of **1a**

Figure SI**11**. ³¹P{¹H} spectrum of **1a**

Figure SI12. ¹H NMR spectrum of **1b**

Figure SI13. ¹³C{¹H} NMR spectrum of 1b

Figure SI14. $^{31}P\{^{1}H\}$ NMR spectrum of $\mathbf{1b}$

Figure SI15. ¹H NMR spectrum of 2a

Figure SI16. ¹³C{¹H} NMR spectrum of 2a

Figure SI17. ³¹P{¹H} NMR spectrum of 2a

Figure SI18. ¹H NMR spectrum of **2b**

Figure SI20. ³¹P{¹H} NMR spectrum of 2b

Characterization data for compounds 3a - 3p

These compounds were characterized by ¹H and ¹³C{¹H} NMR and structurally confirmed by direct comparison of previously reported data.

Compound **3a**, ¹H NMR (300 MHz, CDCl₃): δ 7.86 (d, *J* = 7.7 Hz, 2H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 196.89, 137.73, 132.54, 130.19, 128.41.^{1,4}

Compound **3b**, ¹H NMR (300 MHz, CDCl₃): δ 8.75 (d, *J* = 6.0 Hz, 2H), 7.76 (d, *J* = 7.2 Hz, 2H), 7.58 (t, *J* = 7.60 Hz, 2H), 7.52 (d, *J* = 6.0 Hz, 2H) 7.45 (t, *J* = 7.6 Hz, 2H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 194.9, 150.2, 144.2, 135.4, 133.4, 130.0, 128.5, 122.4.¹

Compound **3c**, ¹H NMR (300 MHz, CDCl₃): δ 7.8 – 7.78 (m, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.42 – 7.40 (m, 1H), 7.34 – 7.28 (m, 2H), 7.12 – 7.10 (m, 1H), 6.84 (br s, 1H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 197.5, 156.3, 138.4, 137.4, 132.9, 130.2, 129.6, 128.5, 122.7, 120.3, 116.3.¹

Compound **3d**, ¹H NMR (300 MHz, $CDCl_3$): δ 7.79-7.74 (m, 2H), 7.65 (d, *J* = 7.7 Hz, 2H), 7.65 (t, J = 7.3 Hz, 1 H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.19 (t, *J* = 8.3 Hz, 2H). ¹³C{¹H} NMR (75.5 MHz, $CDCl_3$): δ 195.41, 165.52 (d, *J*_{C-F} = 252.5 Hz), 137.63, 133.94, 132.80 (d, Hz), 132.61, 130.01, 128.49, 115.68 (d, *J*_{C-F} = 21.2 Hz).^{3,4}

Compound **3e**, ¹H NMR (300 MHz, CDCl₃): δ 7.77 (t, J = 7.9 Hz, 4H), 7.60 (t, J = 7.3 Hz, 1H), 7.55-7.42 (m, 4H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 195.6, 139.0, 137.4, 136.3, 132.8, 131.5, 130.1, 128.9, 128.5.^{1,2,4}

Compound **3f**, ¹H NMR (300 MHz, CDCl₃): δ 7.97-7.84 (m, 2H), 7.61-7.58 (m, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.42 (td, *J* = 7.5, 1.5 Hz, 1H), 7.34-7.30 (m, 2H), 7.29-7.27 (m, 1H), 2.36 (s, 3H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 198.77, 138.74, 137.86, 136.87, 133.25, 131.12, 130.36, 130.26, 128.64, 128.58, 125.32, 20.12.^{1,4}

Compound **3g**, ¹H NMR (300 MHz, CDCl₃): δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.9 Hz, 2H), 2.44 (s, 3 H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 196.5, 143.4, 138.1, 135.0, 132.3, 130.4, 130.1, 129.1, 128.3, 21.8. ^{1,2,4}

Compound **3h**, ¹H NMR (300 MHz, CDCl₃): δ 7.83 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 7.6 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.47 (t, J = 7.4 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 3.89 (s, 3H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 195.6, 163.3, 138.4, 132.7, 132.0, 130.4, 129.7, 128.3, 113.6, 55.5.¹

Compound **3i**, ¹H NMR (300 MHz, CDCl₃): δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 4H), 7.61 (t, *J* = 7.2Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 194.3, 141.1, 136.2, 133.2, 132.4, 130.1, 129.9, 128.1, 117.9, 115.5.¹

Compound **3j**, ¹H NMR (300 MHz, CDCl₃): δ 8.05 (s, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.75 (d, *J* = 7.6 Hz, 2H), 7.64-7.59 (m, 2H), 7.50 (t, *J* = 7.6 Hz, 2H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 193.8, 138.4, 136.0, 135.3, 133.5, 133.2, 133.0, 129.9, 129.4, 128.7, 117.7, 112.6.¹

Compound **3k**, ¹H NMR (300 MHz, CDCl₃): δ 8.70(s, 1H), 8.68 (s, 1H), 8.32 (s, 1H), 7.80 (d, *J* = 7.6 Hz, 2H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 194.8, 149.8, 142.8, 139.8, 136.3, 130.7, 130.1, 128.7, 123.5.

Compound **3I**, ¹H NMR (300 MHz, CDCl₃): δ 7.80 (d, *J* = 7.2 Hz, 2H), 7.67 (d, *J* = 5.2 Hz 1H), 7.62 (d, *J* = 3.6 Hz, 1H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 2 H), 7.14 (t, *J* = 4.4 Hz, 1 H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 188.1, 143.6, 138.4, 135.0, 134.1, 132.4, 129.1, 128.0, 127.7. ^{1,2,3}

Compound **3m**, ¹H NMR (300 MHz, CDCl₃): δ 7.95 – 7.92 (m, 2H), 7.70 – 7.68 (m, 1H), 7.61 – 7.59 (m, 1H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.23 (d, *J* = 3.5 Hz, 1H), 6.59 (dd, *J* = 3.5, 1.6 Hz, 1H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 182.7, 151,9, 147.2, 137.0, 132.7, 129.8, 128.9, 120.7, 112.0.^{1,2,3}

Compound **3n**, ¹H NMR (300 MHz, CDCl₃): δ 7.99 (d, *J* = 8.9, 2H), 7.67 (d, *J* = 4.9 Hz, 1H), 7.59 (d, *J* = 4.1 Hz, 1H), 7.10 – 7.08 (m, 1H), 6.91 (d, *J* = 8.9 Hz, 2H), 3.85 (s, 3H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 187.1, 163.0, 143.8, 134.0, 133.1, 131.5, 130.8, 127.7, 113.5, 55.3.^{1,2,3}

Compound **30**, ¹H NMR (300 MHz, CDCl₃): δ 8.0 (d, *J* = 8.9, 2H), 7.68 (d, *J* = 0.7 Hz, 1H), 7.22 (d, *J* = 3.5 Hz, 1H), 6.98 (d, *J* = 8.9 Hz, 2H), 6.59-6.57 (m, 1H), 3.88 (s, 3H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 181.0, 163.2, 152.5, 146.5, 131.6, 129.7, 119.6, 113.6, 112.0, 55.4.^{1,2,3}

Compound **3p**, ¹H NMR (300 MHz, CDCl₃): δ 7.97 (t, J = 8.2 Hz, 2H), 7.90 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.2 Hz, 2H), 7.58 – 7.41 (m, 4H), 6.92 (d, J = 8.6 Hz, 2H), 3.87 (s, 3H). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 196.5, 163.5, 136.7, 133.5, 132.2, 130.9, 130.6, 130.5, 128.2, 126.8, 126.7, 126.1, 125.4, 124.2, 113.5, 55.3.²

[1] J. Karthikeyan, K. Parthasarathy and C.-H. Cheng, *Chem. Commun.*, 2011, **47**, 10461-10463.

[2] G. Mora, S. Darses and J.-P. Genet, *Advanced Synthesis & Catalysis*, 2007, **349**, 1180-1184.

[3] M. Pucheault, S. Darses and J.-P. Genet, *J. Am. Chem. Soc.*, 2004, **126**, 15356-15357.

[4] S. Shi and M. Szostak, Org. Lett., 2016, 18, 5872-5875.