Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Materials

Ultrafine Co_{0.85}Se nanocrystals dispersed in 3D CNT network as flexible free-standing anode for high performance Lithium-ion battery

Huapeng Li^a, Tongye Wei^c, Shouji Huang^a, Guobao Xu^b, Xiong Liu^a, Jiao Tian^a,

Liwen Yang^a, Juexian Cao^c, Xiaolin Wei^{a,*}

 ^aSchool of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
^bNational-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, 411105, Hunan, China
^cHunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105 China

^{*} Corresponding authors: xlw@xtu.edu.cn(X. L. Wei);

Figure. S1 FTIR spectra of NCSNC.

Figure. S2 TGA analysis of NCSNC@C/CNT, through which the mass ratio of NCSNC in NCSNC@C/CNT is calculated to be 56.33% in total.

Figure. S3 XPS spectra of NCSNC@C/CNT.

Figure. S4 Cross section SEM image of the as prepared NCSNC@C/CNT film, the thickness of the film is about $49\mu m$.

Figure. S5 TEM image of NCSNC@C/CNT: (a) BSA derived carbon helps to connect CNTs and improves the plasticity of the as-prepared composite film; (b) BSA derived carbon helps to anchor NCSNC onto CNT and ensure an efficient electron transport.

Figure. S6 The 10th, 50th and 90th Charge-discharge curves of NCSNC@C/CNT composite film electrode.

Figure. S7 Separators of the after-cycling half coin cells for 250 cycles a the current density of 1A/g(1) NCSNC@C/CNT. (2) NCSNC.

Figure. S8 Rate capabilities of NCSNC@C/CNT//LiFePO₄ full cells.

Cyclic capability list (lithium-ion battery)										
Co. So bood	Grain size (nm)	Cyclic performance (mAh g ⁻¹)								
materials		Low current density	high current density	Ref						
Co _{0.85} Se nanosheets	/	516 mAh g ⁻¹ at 0.2 A g ⁻¹ after 50 cycles (50 cycles in total)	/	1						
Co _{0.85} Se nanosheets@N- doped carbon nanosheets	/	636 mAh g ⁻¹ at 0.2 A g ⁻¹ after 100 cycles (100 cycles in total)	399 mAh g ⁻¹ at 5 A g ⁻¹ after 500 cycles (500 cycles in total)	2						
Co _{0.85} Se nanosheets/graph ene	/	730 mAh g ⁻¹ at 0.5 A g ⁻¹ after 300cycles (300 cycles in total)	478.3 mAh g ⁻¹ at 1 A g ⁻¹ after 300 cycles (300 cycles in total)	3						
$\frac{\text{Co}_{0.85}\text{Se@C/Ti}_{3}\text{C}}{_2\text{T}_{x}\text{ MXene}}$	~29.9	700 mAh g ⁻¹ at 0.2 A g ⁻¹ after 270 cycles (270 cycles in total)	/	4						
Co _{0.85} Se@N- doped reduced graphene oxide	~200	1471 mAh g ⁻¹ at 0.1 A g ⁻¹ after 60 cycles (100 cycles in total)	787.7 mAh g ⁻¹ at 2 A g ⁻¹ after 1000 cycles (1000 cycles in total)	5						
Co _{0.85} Se Nanoparticles Encapsulated by Nitrogen- Enriched Hierarchically Porous Carbon	~20	/	638.4 mAh g ⁻¹ at 1 A g ⁻¹ after 200 cycles (200 cycles in total)	6						
This work	~17	1582 mAh g ⁻¹ at 0.2 A g ⁻¹ after <mark>80</mark> cycles (100 cycles in total)	499 mAh g ⁻¹ at 1 A g ⁻¹ after 250 cycles (250 cycles in total)	/						

Table. S1 Comparison of the cyclic capabilities of $Co_{0.85}Se$ based LIB anode materials.

Rate capability list (lithium-ion battery)									
Co _{0.85} Se based materials	Grain size	0.1 A	Rate	e capabili 0.5 A	ty (mAh 1 A g ⁻	g^{-1}) 2 A g ⁻	5 A g-	Ref	
Co _{0.85} Se nanosheets	(1111)	675	645	574	493	374	/	1	
Co _{0.85} Se nanosheets@N- doped carbon nanosheets	/	/	802	694	496	378	252	2	
Co _{0.85} Se nanosheets/graph ene	/	750	790	664.5	613.3	522.7	327.8	3	
$\frac{\text{Co}_{0.85}\text{Se}@\text{C/Ti}_3\text{C}}{_2\text{T}_x\text{ MXene}}$	~29.9	365.1	/	270.3	193.2	100.8	/	4	
Co _{0.85} Se@N- doped reduced graphene oxide	~200	862.8	929	973.7	945.6	871.6	643.9	5	
Co _{0.85} Se Nanoparticles @Nitrogen- Enriched Hierarchically Porous Carbon	~20	696.1	657.3	632.4	585.9	511.8	401.7	6	
This work	~17	797	824	830	776	687	548	/	

Table. S2 Comparison of the Rate capabilities of $Co_{0.85}Se$ based LIB anode materials.

References

- 1. J. Zhou, Y. Wang, J. Zhang, T. Chen, H. Song and H. Y. Yang, *Nanoscale*, 2016, **8**, 14992-15000.
- 2. G. Wang, H. Yue, Y. Xu, G. Liu, R. Jin and S. Gao, J. Colloid. Interf. Sci, 2020, 570, 332-339.
- 3. G. Zhang, K. Liu, S. Liu, H. Song and J. Zhou, J. Alloy. Compd, 2018, **731**, 714-722.
- 4. W. Ding, S. Wang, X. Wu, Y. Wang, Y. Li, P. Zhou, T. Zhou, J. Zhou and S. Zhuo, *J. Alloy. Compd*, 2020, **816**, 152566.
- 5. C. Wang, B. Zhang, X. Ou, H. Xia, L. Cao, L. Ming and J. Zhang, *J. Colloid. Interf. Sci*, 2020, **573**, 223-231.
- 6. X. Zhang, J. Zhou, Y. Zheng and D. Chen, *ACS. Appl. Mater & Inter*, 2020, **12**, 9236-9247.