Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information File

Bovine Serum Albumin Interactive One Dimensional Hexanuclear Manganese (III) Complex: Synthesis, Structure, Binding and Molecular Docking Studies

Rousunara Khatun^{ac,†}, Malay Dolai^{a,b,†}, Mihir Sasmal^a, Nayim Sepay^d and Mahammad Ali*^{,a,c}

^aDepartment of Chemistry, Inorganic Section, Jadavpur University, 4 Raja S.C. Mullick Road, Kolkata-700032, India. E-mail: m_ali2062@yahoo.com

^bDepartment of Chemistry, Prabhat Kumar College, Purba Medinipur 721404, West Bengal, India.

^cVice Chancellor, Aliah University, II-A/27, Action Area II, Newtown, Kolkata, West Bengal 700156, India.

^dDepartment of Chemistry, Lady Brabourne College, Kolkata 700 017, India.

Fig.S1 ORTEP diagram (30% ellipsoidal probability) of the asymmetric unit of the complex with atom numbering scheme.

Formula	C ₂₅ H ₂₆ Mn ₃ N ₆ O ₁₃ , H ₂ O
Formula Weight	785.35 + 1
Crystal System	Monoclinic
Space group	P21/C (No. 14)
a, b, c [Å]	10.0691(3) 22.5723(6)
	13.2877(3)
α, β, γ [°]	90 90.541(1) 90
V [Å ³]	3019.93(14)
Z	4
D(calc) [g/cm ³]	1.727
Mu(MoKa) [/mm]	1.312
F(000)	1596
Crystal Size [mm]	$0.34 \times 0.25 \times 0.18$
Data Collection	
Temperature (K)	273
Radiation [Å]	0.71073
Theta Min-Max [°]	1.8, 27.5
Dataset	-13: 13 ; -29: 29 ; -17: 17
Tot., Uniq. Data, R(int)	13948, 6916, 0.032
Observed data $[I > 2.0 \text{ sigma}(I)]$	4256
Refinement	
N _{ref} , N _{par}	6916, 442
R, wR2, S	0.0441, 0.1178, 1.07

 Table S 1: Crystal data and Refinement parameters for Complex 1.

Computational details

The ground and excited state electronic structure calculation in gas phase of complex **1** have been carried out using DFT¹ method associated with the conductor-like polarizable continuum model (CPCM).² Becke's hybrid function³ with the Lee-Yang-Parr (LYP) correlation function⁴ was used throughout the study.

For C, H, N, O, and Mn atoms, we employed 6-31+g as basis set for all the calculations. All the calculations were performed with the Gaussian 09W software package.⁵ Gauss Sum 2.1 program⁶ was used to calculate the molecular orbital contributions from groups or atoms.

Fig. S2: The packing diagram of the polymeric chains of complex 1.

	Bond Distances	
Mn1 -O1	1.882(2)	
Mn1 -O7	1.879(2)	
Mn1 -O10	1.933(2)	
Mn1 -N1	1.978(3)	
Mn1 -N4	2.220(3)	
Mn1 -O10_b	2.491(2)	
Mn2 -O1W	2.304(4)	
Mn2 -O3	1.869(2)	
Mn2 -O7	1.887(2)	
Mn2 -O8	1.911(2)	
Mn2 -O11	2.316(3)	
Mn2 -N2	1.995(3)	
Mn3 -O5	1.861(2)	
Mn3 -O7	1.883(2)	
Mn3 -O9	1.878(2)	
Mn3 -N3	1.988(3)	
Mn3 -N6 a	2.213(4)	

Table	S2.Selected	bond	distances	(Å)
-------	-------------	------	-----------	----	---

a = -x, 1-y, 2-z b = 1-x, 1-y, 2-z**Table S3.** Selected Bond Angles (°) of complex-1

	Bond Angles
O1 -Mn1 -O7	172.41(9)

O1 -Mn1 -O10	88.01(9)
O1 -Mn1 -N1	90.21(10)
O1 -Mn1 -N4	90.84(10)
O1 -Mn1 -O10_b	84.25(8)
O7 -Mn1 -O10	91.03(9)
O7 -Mn1 -N1	89.16(10)
O7 -Mn1 -N4	96.74(10)
O7 -Mn1 -O10_b	88.16(8)
O10 -Mn1 -N1	167.86(11)
O10 -Mn1 -N4	95.96(11)
O10 -Mn1 -O10_b	81.84(8)
N1 -Mn1 -N4	96.07(12)
O10_b -Mn1 -N1	86.04(10)
O10_b -Mn1 -N4	174.68(9)
O1W -Mn2 -O3	89.35(12)
O1W -Mn2 -O7	89.92(12)
O1W -Mn2 -O8	90.74(13)
O1W -Mn2 -O11	176.12(13)
O1W -Mn2 -N2	94.57(13)
O3 -Mn2 -O7	179.14(9)
O3 -Mn2 -O8	88.51(9)
O3 -Mn2 -O11	94.36(10)
O3 -Mn2 -N2	90.77(10)
O7 -Mn2 -O8	91.96(9)
O7 -Mn2 -O11	86.37(10)
O7 -Mn2 -N2	88.83(10)
O8 -Mn2 -O11	90.52(12)

Table S4. Hydrogen Bond table (Å,°)

D-HA	D-H(Å)	H-A(Å)	D-A(Å)	<d-ha(°)< th=""><th>symmetry</th></d-ha(°)<>	symmetry
O1W -H2W1 N5	0.8500	2.4600	3.277(5)	162.00	
O1W -H2W1 N6	0.8500	2.3800	3.099(6)	142.00	
С1 -Н1 О2	0.9300	2.5200	3.356(4)	149.00	x,1/2-y,-1/2+z
C4 -H4 O8	0.9300	2.4700	3.386(4)	168.00	x,1/2-y,1/2+z

Fig. S3: Interactions of different amino acid residues of BSA with complex 1 in 2D view.

References

- 1. R. G. Parr, Horizons Quantum Chem., 1980, 5–15.
- 2. M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem, 2003, 24, 669–681.
- 3. A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- 4. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, 37, 785–789.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V Ortiz, J. Cioslowski and D. J. Fox, *Gaussian Inc.*, 2009, Wallingford CT.
- 6. N. M.; O'Boyle, A. L. Tenderholt and K. M. Langner, J. Comput. Chem. 2008, 29, 839–845.