Electronic Supplementary Information for

CO₂ electrochemical reduction boosted by the regulated electronic properties of metalloporphyrins through tuning atomic environment

Jingjing Ye, Dewei Rao* and Xiaohong Yan*

School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013,

P. R. China. Fax: +86-511-88783268.

Email: dewei@ujs.edu.cn; yanxh@ujs.edu.cn

Fig. S1 DFT-optimized structures of MPP and MCIPP, where M = Mn, Fe, Ni, Cu, Mo, Pd, Ir and Pt. The cyan, purple, fuchsia, pink, black, olive, orange, lightblue, grey, blue, white and green balls represent Mn, Fe, Ni, Cu, Mo, Pd, Ir, Pt, C, N, H and Cl atoms, respectively.

Fig. S2 DFT-optimized structures of MXPP, where M = Mn, Fe, and Mo, X= Na and S. The cyan, purple, black, brown, orangered, grey, blue and white balls represent Mn, Fe, Mo, Na, S, C, N and H atoms, respectively.

Fig. S3 Top and side views of isosurface of deformation charge density of MPP and MClPP, where M = Mn, Fe, Ni, Cu, Mo, Pd, Ir and Pt. The inset shows the top and side views of the enlarged deformation charge density of the metal sites. The value of isosurface is 0.02 eV/Å³. The cyan, purple, fuchsia, pink, black, olive, orange, lightblue, grey, blue, white and green balls represent Mn, Fe, Ni, Cu, Mo, Pd, Ir, Pt, C, N, H and Cl atoms, respectively.

Fig. S4 Top and side views of isosurface of deformation charge density of MNaPP and MSPP, where M = Mn, Fe, and Mo. The inset shows the top and side views of the enlarged deformation charge density of the metal sites. The yellow areas represent charge accumulation and the cyan areas represent charge depletion. The value of isosurface is 0.02 eV/Å³. The cyan, purple, black, brown, orangered, grey, blue and white balls represent Mn, Fe, Mo, Na, S, C, N and H atoms, respectively.

Fig. S5 Gibbs free energy profiles for CO₂RR on (a)MnPP, (b)FePP, (c)NiPP, (d)CuPP, (e)MoPP, (f)PdPP, (g)IrPP and (h)PtPP at zero potential. The free energy zero is set as that of a CO₂ molecule in the gas phase and with a clean catalyst surface. The "X" in the profiles indicates that the intermediate is unstable. The black line is the most favorable pathway.

Fig. S6 Gibbs free energy profiles for CO₂RR on (a)MnClPP, (b)FeClPP, (c)NiClPP, (d)CuClPP, (e)MoClPP, (f)PdClPP, (g)IrClPP and (h)PtClPP at zero potential. The free energy zero is set as that of a CO₂ molecule in the gas phase and with a clean catalyst surface. The "X" in the profiles indicates that the intermediate is unstable. The black line is the most favorable pathway.

Fig. S7 Gibbs free energy profiles for CO₂RR on (a)MnNaPP, (b)MnSPP, (c)FeNaPP, (d)FeSPP, (e)MoNaPP and (f)MoSPP at zero potential. The free energy zero is set as that of a CO₂ molecule in the gas phase and with a clean catalyst surface. The "X" in the profiles indicates that the intermediate is unstable. The black line is the most favorable pathway.

Fig. S8 PDOS of (a) Mn, (b)Fe and (c) Mo atoms when doped with different ions.

Table \$1 Chemical potentials (u) of gas-phase molecules obtained by summing up DET electronic
Factor of chemical potentials (μ) of gas-phase molecules obtained by summing up DTT electronic
energy (E_{DFT}), zero-point energy (ZPE), enthalpic temperature correction (JC _P dT), and entropy
contribution (-TS). ^a Data from Lim et al ¹ . ^b Data from Peterson et al ² . ^c Data from the current
study. All data are given in eV.

Species	E _{DFT} c	ZPE ^a (ZPE ^b)	∫C _P dT ^b	-TS ^b	μ(eV)
CH ₄	-24.04	1.19(1.20)	0.10	-0.60	-23.34
CO ₂	-22.95	0.28(0.31)	0.10	-0.65	-23.19
СО	-14.78	0.12(0.14)	0.09	-0.67	-15.22
CH ₃ OH	-30.22	(-1.35)	0.11	-0.79	-32.25
H ₂	-6.77	0.3(0.27)	0.09	-0.42	-6.83
H ₂ O	-14.22	0.60(0.58)	0.10	-0.65	-14.19
НСООН	-29.89	0.86(0.9)	0.11	-1.02	-29.90
CH ₂ O(HCHO)	-22.13	(-0.7)	0.10	-0.66	-23.39

Table S2 The electronic energy (EDFT), zero point energy (ZPE), and entropy contribution (–TS)of adsorbate-surface systems on MPP, where M = Mn, Fe, Ni, Cu, Mo, Pd, Ir and Pt. The
temperature of the reaction is 298.15 K. All data are given in eV.

Adsorbed species on MnPP	E _{DFT}	ZPE	-TS
*OCHO	-285.77841253	0.5844	-0.2000
*ОСНОН	-289.59862081	0.9265	-0.2684
Adsorbed species on FePP	E _{DFT}	ZPE	-TS
*OCHO	-284.02311661	0.5852	-0.2567
*ОСНОН	-288.16335322	0.9220	-0.2832
Adsorbed species on NiPP	E _{DFT}	ZPE	-TS
*OCHO	-280.26407046	0.5616	-0.2072
*ОСНОН	-285.32408735	0.9067	-0.2598
Adsorbed species on CuPP	E _{DFT}	ZPE	-TS
*OCHO	-277.80343014	0.5578	-0.2009
*ОСНОН	-283.06709841	0.9098	-0.2605
Adsorbed species on MoPP	E _{DFT}	ZPE	-TS
Adsorbed species on MoPP *OCHO	Е _{DFT} -286.87843094	ZPE 0.5942	-TS -0.2585
Adsorbed species on MoPP *OCHO *OCHOH	E _{DFT} -286.87843094 -289.91263921	ZPE 0.5942 0.9213	-TS -0.2585 -0.2369
Adsorbed species on MoPP *OCHO *OCHOH Adsorbed species on PdPP	E _{DFT} 286.87843094 289.91263921 E _{DFT}	ZPE 0.5942 0.9213 ZPE	-TS -0.2585 -0.2369 -TS
Adsorbed species on MoPP *OCHO *OCHOH Adsorbed species on PdPP *OCHO	EDFT -286.87843094 -289.91263921 EDFT -279.95376489	ZPE 0.5942 0.9213 ZPE 0.5545	-TS -0.2585 -0.2369 -TS -0.2150
Adsorbed species on MoPP *OCHO *OCHOH Adsorbed species on PdPP *OCHO *OCHOH	EDFT -286.87843094 -289.91263921 EDFT -279.95376489 -285.19776296	ZPE 0.5942 0.9213 ZPE 0.5545 0.8933	-TS -0.2585 -0.2369 -TS -0.2150 -0.1683
Adsorbed species on MoPP *OCHO *OCHOH Adsorbed species on PdPP *OCHO *OCHOH Adsorbed species on IrPP	EDFT -286.87843094 -289.91263921 EDFT -279.95376489 -285.19776296 EDFT	ZPE 0.5942 0.9213 ZPE 0.5545 0.8933 ZPE	-TS -0.2585 -0.2369 -TS -0.2150 -0.1683 -TS
Adsorbed species on MoPP *OCHO *OCHOH Adsorbed species on PdPP *OCHO *OCHOH Adsorbed species on IrPP *COOH	EDFT 286.87843094 289.91263921 EDFT -279.95376489 285.19776296 EDFT -284.95473398	ZPE 0.5942 0.9213 ZPE 0.5545 0.8933 ZPE 0.6318	-TS -0.2585 -0.2369 -TS -0.2150 -0.1683 -TS -0.1562
Adsorbed species on MoPP *OCHO *OCHOH Adsorbed species on PdPP *OCHO *OCHOH Adsorbed species on IrPP *COOH *HCOOH	EDFT 286.87843094 289.91263921 EDFT -279.95376489 285.19776296 EDFT -284.95473398 287.69480262	ZPE 0.5942 0.9213 ZPE 0.5545 0.8933 ZPE 0.6318 0.9010	-TS -0.2585 -0.2369 -TS -0.2150 -0.1683 -TS -0.1562 -0.2258
Adsorbed species on MoPP *OCHO *OCHOH Adsorbed species on PdPP *OCHO *OCHOH Adsorbed species on IrPP *COOH *HCOOH Adsorbed species on PtPP	EDFT 286.87843094 289.91263921 EDFT -279.95376489 285.19776296 EDFT -284.95473398 287.69480262 EDFT	ZPE 0.5942 0.9213 ZPE 0.5545 0.8933 ZPE 0.6318 0.9010 ZPE	-TS -0.2585 -0.2369 -TS -0.2150 -0.1683 -TS -0.1562 -0.2258 -TS
Adsorbed species on MoPP *OCHO *OCHOH Adsorbed species on PdPP *OCHO *OCHOH Adsorbed species on IrPP *COOH *COOH *HCOOH Adsorbed species on PtPP	EDFT -286.87843094 -289.91263921 EDFT -279.95376489 -285.19776296 EDFT -284.95473398 -287.69480262 EDFT -281.386445111	ZPE 0.5942 0.9213 ZPE 0.5545 0.8933 ZPE 0.6318 0.9010 ZPE 0.5612	-TS -0.2585 -0.2369 -TS -0.2150 -0.1683 -TS -0.1562 -0.2258 -TS -0.22772

Adsorbed species on MnClPP	E _{DFT}	ZPE	-TS
*ОСНО	-291.32625654	0.5629	-0.2384
*O+CH ₂ O	-271.30319921	0.0690	-0.0568
*OH	-275.75684294	0.3550	-0.1013
*OH2	-279.41878353	0.6600	-0.1526
Adsorbed species on FeClPP	E _{DFT}	ZPE	-TS
*ОСНО	-289.47395911	0.6025	-0.2213
*O+CH ₂ O/	-269.69461495/	0.0726/	-0.0528/
*ОСНОН	-293.51022311	0.9494	-0.1956
*OH	-274.24855348	0.3476	-0.1021
*OH ₂	-278.30053476	0.6649	-0.1397
Adsorbed species on NiClPP	E _{DFT}	ZPE	-TS
*ОСНО	-285.82529599	0.5734	-0.2589
*ОСНОН	-290.21958811	0.8991	-0.3154
Adsorbed species on CuClPP	E _{DFT}	ZPE	-TS
*ОСНО	-283.15555263	0.5629	-0.2700
*ОСНОН	-288.03665625	0.8983	-0.2595
Adsorbed species on MoCIPP	E _{DFT}	ZPE	-TS
*СООН	-292.36700416	0.6012	-0.1833
*НСООН	-296.11854325	0.9091	-0.2471
Adsorbed species on PdClPP	E _{DFT}	ZPE	-TS
*ОСНО	-285.44500083	0.5571	-0.2366
*ОСНОН	-289.89936175	0.8794	-0.3248
Adsorbed species on IrClPP	E _{DFT}	ZPE	-TS
*СООН	-290.90362127	0.6230	-0.2156
*CO+H ₂ O	-279.87689838	0.2332	-0.1232
*СНО	-283.71194057	0.4795	-0.0951
*CH ₂ O	-286.24227416	0.7367	-0.2316
Adsorbed species on PtClPP	E _{DFT}	ZPE	-TS

Table S3 The electronic energy (E_{DFT}), zero point energy (ZPE), and entropy contribution (-TS)of adsorbate-surface systems on MCIPP, where M = Mn, Fe, Ni, Cu, Mo, Pd, Ir and Pt. All dataare given in eV.

*ОСНО	-286.87146368	0.5684	-0.2655
*ОСНОН	-291.37161234	0.8585	-0.2528

Table S4 The electronic energy (E_{DFT}), zero point energy (ZPE), and entropy contribution (–TS) of adsorbate-surface systems on MXPP, where M = Mn, Fe, and Mo, X= Na and S. All data are given in eV.

	0		
Adsorbed species on MnNaPP	E _{DFT}	ZPE	-TS
*ОСНО	-283.88984085	0.5671	-0.1760
*ОСНОН	-287.92208430	0.9223	-0.2309
*OCH ₂ OH	-291.06093975	1.2094	-0.2997
*OCH ₂ +H ₂ O	-280.44891277	0.7560	-0.2265
*OCH ₃	-284.48901794	1.0589	-0.1436
*OHCH ₃	-288.68945759	1.4078	-0.2252
*OH+CH ₄	-268.42933007	0.3331	-0.1245
*OH ₂	-272.74338160	0.6273	-0.1838
Adsorbed species on FeNaPP	E _{DFT}	ZPE	-TS
*ОСНО	-282.19167177	0.5866	-0.2072
*ОСНОН	-286.21364147	0.9360	-0.2583
*OCH ₂ OH	-289.59387388	1.2130	-0.3108
*OCH ₂ +H ₂ O	-278.38997146	0.7411	-0.1903
*OCH ₂ /	-282 91449711/	1 0658/	-0.1951/
*OHCH ₂	-281.36904487	1.0244	-0.2865
*OHCH ₃ /	-287.27666562/	1.4076/	-0.2359/
*O+CH ₄	-262.22797157	0.0708	-0.0655
*OH+CH ₄ /	-266.79131062/	0.3229/	-0.1309/
*OH	-266.80629702/	0.3193	-0.1441
	-271.23867018/	0.6373/	-0.2086/
*OH ₂	-271.27248648	0.6408	-0.2040
Adsorbed species on MoNaPP	E _{DFT}	ZPE	-TS
*ОСНО	-284.54706632	0.5935	-0.2561
*ОСНОН	-288.13830475	0.9322	-0.2419

*OCH ₂ OH	-292.20610086	1.2364	-0.1954
*OCH ₂ +H ₂ O	-280.92708700	0.7510	-0.1645
*CH ₂ OH	-284.95984391	1.0840	-0.2193
*CH ₂ +H ₂ O	-274.35528727	0.5956	-0.1265
*CH3	-278.81717133	0.9190	-0.1181
*CH4	-282.59337561	1.2017	-0.1905
Adsorbed species on MnSPP	E _{DFT}	ZPE	-TS
*СООН	-292.20720968	0.6130	-0.1747
*CO+H ₂ O/	-281.61095461/	0.1984/	-0.1418/
*HCOOH	-296.30127078	0.8979	-0.2419
*CHO	-284.90417098	0.4402	-0.1757
*CU O	200 00750450	0 7178	0.313/
*CH ₂ O	-289.08739438	0.7170	-0.3134
Adsorbed species on	-289.08739438	7.PE	-0.3134
Adsorbed species on FeSPP	-289.08739438 E _{DFT}	ZPE	-0.3134 -TS
Adsorbed species on FeSPP *COOH	-289.08739438 E _{DFT} -290.68597416	0.7178 ZPE 0.6152	-0.3134 -TS -0.1856
*CH2O Adsorbed species on FeSPP *COOH *CO+H2O/	-289.08739438 E _{DFT} -290.68597416 -280.44180630/	0.7178 ZPE 0.6152 0.2115/	-0.13134 -0.1856 -0.1375/
*CH ₂ O Adsorbed species on FeSPP *COOH *CO+H ₂ O/ *HCOOH	-289.08739438 E _{DFT} -290.68597416 -280.44180630/ -294.68130917	0.7178 ZPE 0.6152 0.2115/ 0.8992	-0.3134 -TS -0.1856 -0.1375/ -0.1704
*CH ₂ O Adsorbed species on FeSPP *COOH *CO+H ₂ O/ *HCOOH *CHO	-289.08739438 E _{DFT} -290.68597416 -280.44180630/ -294.68130917 -283.63400729	O.6152 0.2115/ 0.8992 0.4528	-0.13134 -TS -0.1856 -0.1375/ -0.1704 -0.1602
*CH ₂ O Adsorbed species on FeSPP *COOH *CO+H ₂ O/ *HCOOH *CHO *CHO	EDFT -290.68597416 -280.44180630/ -294.68130917 -283.63400729 -287.61056082	ZPE 0.6152 0.2115/ 0.8992 0.4528 0.7358	-0.3134 -TS -0.1856 -0.1375/ -0.1704 -0.1602 -0.2504
Adsorbed species on FeSPP *COOH *CO+H ₂ O/ *HCOOH *CHO *CHO *CH ₂ O Adsorbed species on MoSPP	EDFT -290.68597416 -280.44180630/ -294.68130917 -283.63400729 -287.61056082 EDFT	ZPE 0.6152 0.2115/ 0.8992 0.4528 0.7358 ZPE	
*CH ₂ O Adsorbed species on FeSPP *COOH *CO+H ₂ O/ *HCOOH *CHO *CHO *CH2O Adsorbed species on MoSPP *OCHO	-289.08739438 E _{DFT} -290.68597416 -280.44180630/ -294.68130917 -283.63400729 -287.61056082 E _{DFT} -295.42469752	0.7178 ZPE 0.6152 0.2115/ 0.8992 0.4528 0.7358 ZPE 0.5621	
Adsorbed species on FeSPP *COOH *CO+H ₂ O/ *HCOOH *CHO *CHO *CH ₂ O Adsorbed species on MoSPP *OCHO *O+CH O	-289.08739438 EDFT -290.68597416 -280.44180630/ -294.68130917 -283.63400729 -287.61056082 EDFT -295.42469752 275.48105776	0.7178 ZPE 0.6152 0.2115/ 0.8992 0.4528 0.7358 ZPE 0.5621 0.0663	
*CH ₂ O Adsorbed species on FeSPP *COOH *CO+H ₂ O/ *HCOOH *CHO *OCHO *O+CH ₂ O	-289.08739438 EDFT -290.68597416 -280.44180630/ -294.68130917 -283.63400729 -287.61056082 EDFT -295.42469752 -275.48105776	0.7178 ZPE 0.6152 0.2115/ 0.8992 0.4528 0.7358 ZPE 0.5621 0.0663	-TS -0.1856 $-0.1375/$ -0.1704 -0.1602 -0.2504 $-TS$ -0.2224 -0.0632
*CH ₂ O Adsorbed species on FeSPP *COOH *CO+H ₂ O/ *HCOOH *CHO *OCHO *O+CH ₂ O *OH	EDFT -290.68597416 -280.44180630/ -294.68130917 -283.63400729 -287.61056082 EDFT -295.42469752 -275.48105776 -279.58353434	0.7178 ZPE 0.6152 0.2115/ 0.8992 0.4528 0.7358 ZPE 0.5621 0.0663 0.3287	-TS -0.1856 $-0.1375/$ -0.1704 -0.1602 -0.2504 $-TS$ -0.2224 -0.0632 -0.1190

Catalyst	НСООН	CO	CH ₂ O
Mn	-0.552	/	/
Fe	-0.494	/	/
Ni	-0.293	/	/
Cu	-0.343	/	/
Mo	-0.664	-3.386	-0.232
Pd	-0.260	/	/
Ir	-0.618	-1.457	-0.503
Pt	-0.334	/	/

Table S5 The energy of the catalyst to adsorb HCOOH, CO, CH_2O , CH_3OH and CH_4 on MPP, where M = Mn, Fe, Ni, Cu, Mo, Pd, Ir and Pt, All data are given in eV.

Table S6 Equilibrium potentials of several possible CO₂RR cathode reactions³.

Reactions	Uequ vs RHE(V)
$CO_2+2H^++2e^-\rightarrow CO(g)+H_2O$	-0.12
$CO_2+2H^++2e^-\rightarrow HCOOH(l)$	-0.20
$CO_2+4H^++4e^-\rightarrow HCHO(1)+H_2O$	-0.07
$CO_2+6H^++6e^-\rightarrow CH_3OH(l)+H_2O$	0.03
$CO_2+8H^++8e^-\rightarrow CH_4(g)+2H_2O$	0.17

Table S7 The potential determining steps (PDS), maximum free energy change ($\Delta G_{max}/eV$), reduction products and overpotentials (η/V) of the CO₂RR on MPP, where M = Mn, Fe, Ni, Cu, Mo Pd Ir and Pt

110, 1 4, 11 414 1 0.					
Catalyst	PDS	ΔG _{max} (eV)	Product	η (V)	
Mn	*CO ₂ →*OCHO	0.228	НСООН	0.028	
Fe	*CO ₂ →*OCHO	0.471	НСООН	0.271	
Ni	*CO ₂ →*OCHO	1.604	НСООН	1.404	
Cu	*CO ₂ →*OCHO	1.782	НСООН	1.582	
Мо	*ОСНО→*ОСНОН	0.729	НСООН	0.529	
Pd	*CO ₂ →*OCHO	1.830	НСООН	1.630	
Ir	*СООН→*НСООН	0.875	НСООН	0.675	
Pt	*CO ₂ →*OCHO	1.764	НСООН	1.564	

Catalyst	PDS	ΔG _{max} (eV)	Product	η (V)	
Mn	*CO ₂ →*OCHO	0.196	НСНО	0.126	
Fe	*CO ₂ →*OCHO	0.559	HCHO/HCOOH	0.489/0.359	
Ni	*CO ₂ →*OCHO	0.675	НСООН	0.475	
Cu	*CO ₂ →*OCHO	1.227	НСООН	1.027	
Мо	*CO ₂ →*COOH	0.291	НСООН	0.091	
Pd	*CO ₂ →*OCHO	0.887	НСООН	0.687	
Ir	$*CHO \rightarrow *CH_2O$	1.005	НСНО	0.935	
Pt	*CO ₂ →*OCHO	0.726	НСООН	0.526	

Table S8 The potential determining steps (PDS), maximum free energy change ($\Delta G_{max}/eV$),reduction products and overpotentials (η/V) of the CO2RR on MCIPP, where M = Mn, Fe, Ni, Cu,
Mo, Pd, Ir and Pt.

Table S9 The potential determining steps (PDS), maximum free energy change ($\Delta G_{max}/eV$), reduction products and overpotentials (η/V) of the CO₂RR on MXPP, where M = Mn, Fe, and Mo, X = Na and S

X- INd alid S.						
Catalyst	PDS	ΔG _{max} (eV)	Product	η (V)		
Mn (Na ⁺)	*OCHOH→*OCH ₂ OH	0.494	CH_4	0.663		
Mn (S ²⁻)	*CO ₂ →*COOH	0.563	HCHO/HCOOH	0.493/0.313		
Fe (Na ⁺)	*CO ₂ →*OCHO	0.788	CH_4	0.957		
Fe (S ²⁻)	*CO ₂ →*COOH	0.617	HCHO/HCOOH	0.547/0.367		
Mo (Na ⁺)	*ОСНО→*ОСНОН	0.177	CH_4	0.346		
Mo (S ²⁻)	$*OH_2 \rightarrow *+H_2O$	0.012	НСНО	-0.060		

References

- 1. D. H. Lim, J. H. Jo, D. Y. Shin, J. Wilcox, H. C. Ham and S. W. Nam, *Nanoscale*, 2014, **6**, 5087-5092.
- 2. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. R. Osmiumsl and J. K. Nerskov, *Energ. Environ. Sci.*, 2010, **3**, 1311-1315.
- 3. C. Oloman and H. Li, *ChemSusChem*, 2008, **1**, 385-391.