Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information For

Regioselectivity of aminomethylation in 3-acetyl-7-hydroxycoumarins:

Mannich bases and Betti bases

Fan Gao, Deng Tao, Cheng Ju, Bei-Bei Yang, Xiu-Qi Bao, Dan Zhang, Tian-Tai Zhang, Li Li*

Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China

Corresponding author: annaleelin@imm.ac.cn

1 ¹ H- and ¹³ C-NMR spectra of compounds 8-29	S2
2 ESI-HRMS spectra of compounds 8-29	S46
3 Cartesian coordinates of compounds 6, 30-33	S68
4 Sources of the reagents used in the synthesis process	S72

¹H-NMR (400 MHz) spectrum of compound **8** in DMSO- d_6

¹³C-NMR (100 MHz) spectrum of compound **8** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound **9** in DMSO- d_6

¹³C-NMR (100 MHz) spectrum of compound **9** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound **10** in DMSO- d_6

¹³C-NMR (100 MHz) spectrum of compound **10** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound **11** in DMSO- d_6

¹³C-NMR (100 MHz) spectrum of compound **11** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound **12** in DMSO- d_6

¹³C-NMR (100 MHz) spectrum of compound **12** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound **13** in DMSO- d_6

¹³C-NMR (100 MHz) spectrum of compound **13** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound 14 in DMSO- d_6

¹³C-NMR (100 MHz) spectrum of compound **14** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound **15** in trifluoroacetic acid-*d*

¹³C-NMR (100 MHz) spectrum of compound **15** in trifluoroacetic acid-*d*

¹H-NMR (400 MHz) spectrum of compound **16** in DMSO- d_6

¹³C-NMR (150 MHz) spectrum of compound **16** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound 17 in DMSO- d_6

¹³C-NMR (100 MHz) spectrum of compound **17** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound **18** in D_2O

¹³C-NMR (100 MHz) spectrum of compound **18** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound **19** in DMSO- d_6

¹³C-NMR (125 MHz) spectrum of compound **19** in DMSO- d_6

¹³C-NMR (100 MHz) spectrum of compound **20** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound **21** in DMSO- d_6

¹³C-NMR (125 MHz) spectrum of compound **21** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound **22** in DMSO- d_6

¹³C-NMR (125 MHz) spectrum of compound **22** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound **23** in DMSO- d_6

¹³C-NMR (100 MHz) spectrum of compound **23** in DMSO- d_6

¹H-NMR (500 MHz) spectrum of compound 24 in D_2O and CF_3COOD

 13 C-NMR (125 MHz) spectrum of compound 24 in D₂O and CF₃COOD

¹H-NMR (400 MHz) spectrum of compound **25** in DMSO- d_6

 $^{13}\text{C-NMR}$ (125 MHz) spectrum of compound **25** in D₂O and CF₃COOD

¹H-NMR (400 MHz) spectrum of compound **26** in D_2O

 $^{13}\text{C-NMR}$ (125 MHz) spectrum of compound **26** in D₂O

¹H-NMR (400 MHz) spectrum of compound **27** in DMSO- d_6

¹³C-NMR (100 MHz) spectrum of compound **27** in DMSO- d_6

¹H-NMR (400 MHz) spectrum of compound **28** in DMSO- d_6

¹³C-NMR (100 MHz) spectrum of compound **28** in chloroform-*d*

¹H-NMR (400 MHz) spectrum of compound **29** in DMSO- d_6

 $^{13}\text{C-NMR}$ (125 MHz) spectrum of compound **29** in D_2O

2. ESI-HRMS spectra of compounds 8-29.

ESI-HRMS spectrum of compound 17

Figure S76. ESI-HRMS spectrum of compound 29

3. Cartesian coordinates of compounds 6, 30-33.

1) Compound **6** under neutral conditions

/	1		
С	2.99045523	1.36371915	-0.00530994
С	3.34159626	-0.00273095	-0.00444494
С	2.35909420	-0.99348503	-0.00028794
С	1.02748010	-0.60737501	0.00310806
С	0.64548606	0.74836609	0.00171106
С	1.66157913	1.72662616	-0.00247494
0	0.08370803	-1.58381509	0.00850206
С	-1.30251407	-1.34227807	0.01217506
С	-1.70834110	0.06830102	0.00184106
С	-0.74348504	1.04039910	0.00143306
0	-1.99419011	-2.32506015	0.02682906
0	4.62785935	-0.41385197	-0.00738694
С	-3.16008621	0.42152804	-0.01264094
С	-3.53314925	1.89560614	0.03198906
0	-4.03500927	-0.42428403	-0.06087295
Н	3.76850728	2.11815420	-0.00846494
Н	2.63117222	-2.04041510	0.00065606
Н	1.38504710	2.77444524	-0.00367394
Н	-1.03231807	2.08417417	-0.00267794
Н	5.22316139	0.34639108	-0.00979294
Н	-4.61933033	1.96599215	0.03895306
Н	-3.13609922	2.38402218	0.92555512
Н	-3.14777622	2.43126618	-0.83971601

2) Compound 6 under acidic conditions

/	1		
С	-3.05553722	1.31779510	-0.09458001
С	-3.35357524	-0.05582900	0.01599400
С	-2.33052617	-1.00166007	0.07820001
С	-1.01694507	-0.55593104	0.03115700
С	-0.68447805	0.80427006	-0.07260901
С	-1.74405913	1.73500013	-0.13889801
0	-0.03053800	-1.49980711	0.07844101
С	1.30740409	-1.19196209	0.03989900
С	1.68658912	0.21503202	-0.00985500
С	0.69554705	1.15226408	-0.09909401
0	2.07524015	-2.14273516	0.04091300
0	-4.66266534	-0.39254803	0.05506500
С	3.13323622	0.56825304	0.02254200
С	3.59022026	1.78323213	0.36101203
Н	2.92857321	2.58293519	0.65720505
Н	4.65438234	1.97940014	0.34444802
0	4.02144429	-0.40549703	-0.32981202

Η	3.55553226	-1.26435809	-0.29666102
Н	-3.87400028	2.02452414	-0.14176601
Н	-2.53655018	-2.06211315	0.15801901
Η	-1.51260411	2.79038520	-0.22101202
Н	0.95397507	2.20034616	-0.19516401
Н	-4.76441734	-1.34918810	0.13547801

3) Compound **30**

С	-2.35700000	0.66900000	0.04300000
Н	-3.31000000	1.19500000	0.05400000
С	-2.30300000	-0.72500000	0.05000000
С	-1.08300000	-1.39100000	0.03700000
Н	-1.04200000	-2.47700000	0.04200000
С	0.08800000	-0.63800000	0.01700000
С	0.06300000	0.75600000	0.01000000
С	-1.17000000	1.41000000	0.02400000
Н	-1.22300000	2.49800000	0.01900000
0	1.30900000	-1.34000000	0.00500000
С	2.52600000	-0.66700000	-0.01500000
С	2.47500000	0.80500000	-0.02200000
Н	3.43000000	1.31800000	-0.03800000
С	1.32200000	1.48200000	-0.01000000
Н	1.30900000	2.56700000	-0.01600000
0	-3.44200000	-1.47900000	0.06900000
Н	-4.22200000	-0.88000000	0.07700000
0	3.59800000	-1.27100000	-0.02600000

4)	Compound 31		
С		3.25200000	-6.03500000
Н		2.41700000	-5.62100000
С		3.29400000	-7.38600000
С		4.36400000	-7.90500000
Н		4.39700000	-8.95900000
С		5.39800000	-7.04900000
С		5.39000000	-5.69100000
С		4.3000000	-5.19100000
Н		4.24500000	-4.13800000
0		6.45900000	-7.62300000
С		7.53200000	-6.85400000
С		7.51100000	-5.42500000

Н

С

2.41700000	-5.62100000	-1.67300000
3.29400000	-7.38600000	-0.77500000
4.36400000	-7.90500000	-0.05900000
4.39700000	-8.95900000	0.20400000
5.39800000	-7.04900000	0.31900000
5.39000000	-5.69100000	-0.00100000
4.30000000	-5.19100000	-0.72500000
4.24500000	-4.13800000	-0.99900000
6.45900000	-7.62300000	1.04300000
7.53200000	-6.85400000	1.46200000
7.51100000	-5.42500000	1.11800000
8.37200000	-4.86300000	1.46700000

6.51400000

-4.84600000

-1.11200000

0.42900000

0		8.46700000	-7.34500000	2.09700000
0		2.29100000	-8.23900000	-1.13600000
Н		1.60700000	-7.73800000	-1.63400000
С		6.65500000	-3.40000000	0.17100000
С		6.15000000	-2.46700000	1.08600000
Η		5.64700000	-2.79900000	1.99300000
С		6.28400000	-1.09900000	0.84000000
Η		5.88900000	-0.37800000	1.55300000
С		6.92400000	-0.65700000	-0.31700000
Η		7.02900000	0.41000000	-0.50700000
С		7.43100000	-1.58100000	-1.23200000
Η		7.93000000	-1.23400000	-2.13500000
С		7.29800000	-2.94900000	-0.99000000
Η		7.69600000	-3.66000000	-1.71200000
5)	Compound 32			
Ć	1	4.78300000	-5.38200000	-0.11000000
С		4.80800000	-6.77400000	-0.14800000
Η		3.89100000	-7.35500000	-0.21500000
С		6.03400000	-7.43200000	-0.09900000
Н		6.07200000	-8.51900000	-0.12800000
С		7.21000000	-6.68400000	-0.01300000
С		7.20400000	-5.28800000	0.02600000
С		5.96300000	-4.64000000	-0.02400000
Η		5.89400000	-3.55500000	0.00300000
0		8.41200000	-7.41600000	0.03200000
С		9.63700000	-6.77500000	0.11800000
С		9.61700000	-5.30400000	0.15900000
Η		10.59300000	-4.83500000	0.22600000
С		8.48800000	-4.58000000	0.11700000
0		10.69500000	-7.40300000	0.15900000
0		3.60300000	-4.69500000	-0.15500000
Η		2.86000000	-5.33700000	-0.21400000
С		8.52200000	-3.07900000	0.16100000
Η		9.54600000	-2.69600000	0.22800000
Η		7.97800000	-2.70400000	1.03500000
Η		8.07600000	-2.65400000	-0.74400000
6)	Compound 33			
С		4.75200000	-5.29600000	-0.24700000
Η		3.81000000	-4.76800000	-0.39700000
С		4.73000000	-6.68200000	-0.06100000
С		5.93900000	-7.35400000	0.10500000

Н	5.95800000	-8.43500000	0.23300000
С	7.13900000	-6.63600000	0.10700000
С	7.19600000	-5.24600000	-0.06100000
С	5.96600000	-4.59000000	-0.24200000
0	8.30100000	-7.41400000	0.29100000
С	9.55700000	-6.83800000	0.31600000
С	9.61400000	-5.38100000	0.14300000
Н	10.61400000	-4.96100000	0.16900000
С	8.53000000	-4.60900000	-0.03500000
0	10.57700000	-7.50800000	0.47500000
С	8.69300000	-3.12500000	-0.20300000
Н	8.17300000	-2.58200000	0.59300000
Н	9.74500000	-2.82200000	-0.15300000
Н	8.31900000	-2.79800000	-1.17800000
0	5.91900000	-3.23100000	-0.42300000
Н	4.98600000	-2.94200000	-0.53200000
С	3.43400000	-7.43800000	-0.10100000
Н	2.61500000	-6.82900000	0.29700000
Н	3.49000000	-8.34400000	0.51000000
Н	3.19700000	-7.72000000	-1.13200000

4. Sources of the reagents used in the synthesis process

Reagent	Brand	Catalogue number
Piperidine hydrochloride	Aladdin	P194173-10g
Diethylamine hydrochloride	Alfa	A13637
Morpholine hydrochloride	ARK	AK116221
4-Hydroxypiperidine	Alfa	B22723
4-Piperidinemethanol	Innochem	A37590
1-Methylpiperazine	Innochem	A59775
1-Phenylpiperazine	Innochem	A61669
1-(2-Fluorophenyl)piperazine	Aladdin	F156585-5g
1-(2-Tetrahydrofuroyl)piperazine	TCI	T2617