Two-dimensional C₃N/Blue Phosphorene vdW Heterostructure for Li, Na and K-ion batteries.

Mohammad Ubaid,^{a*} Anver Aziz^a and Bhalchandra S Pujari^b

^aDepartment of Physics, Jamia Millia Islamia, New Delhi 110025, India ^bDepartment of Scientific Computing, Modeling & Simulation, Savitribai Phule Pune University, Pune 411007, India

E-mail: ubaidm020@gmail.com

Phonon dispersion spectrum of C₃N/BP HS

We have investigated the phonon dispersion spectrum of C_3N/BP HS and shown in figure S1. It is always challenging to assess the phonons for heterostructure, which constitute the lattice mismatch. We indeed see some imaginary phonons which are clearly due to the lattice mismatch. However, we must point out that the frequencies of the imaginary modes are small (<100Hz). It may appear as a hindrance to form the heterostructure, however, owing to the low values, the structure can be stabilized by an appropriate substrate, which is typically the case with such systems.

Fig. S1 Calculated dispersion spectrums of C_3N/BP HS.

Fig. S2 The migration pathways of X (Li/Na/K) in the interlayer of C_3N/BP HS.

Fig. S3 The optimized structures of Li inserted C₃N/BP HS. (a) C₃N/9Li/BP and (b) 16Li/C₃N/9Li/BP.

Fig. S4 The optimized structures of Na inserted C₃N/BP HS. (a) C₃N/9Na/BP and (b) $18Na/C_3N/9Na/BP/27Na$.

Fig. S5 The optimized structures of K inserted C₃N/BP HS. (a) C₃N/9K/BP and (b) 15K/C₃N/9K/BP/12K.