Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information

Synthesis of a stable iron(III)-organic framework for visible light induced simultaneous photocatalytic reduction of Cr(VI) and degradation of organic dyes in water

A-Di Xie,^{a, #} Ming-Gai Hu,^{a, #} Yu-Hui Luo,^{a,} * Xiang-Gui Zhu,^a Zhi-Hui Wang,^b Wu-Yue Geng,^a Hao Zhang,^a Dong-En Zhang,^{a, *} and Hong Zhang^{b, *}

^a School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, P. R. China

^b Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China

[#] These two authors contributed equally.

* Corresponding authors. E-mail: <u>luoyh@jou.edu.cn</u> (Yu-Hui Luo), <u>2007000040@jou.edu.cn</u> (Dong-En Zhang), <u>zhangh@nenu.edu.cn</u> (Hong Zhang).

Materials and Measurements

All reagents and solvents were purchased from commercial sources and used without further purification. Powder X-ray diffraction (PXRD) patterns were collected X'Pert Powder X-ray diffractometer with on а PANalytical graphite monochromatized Cu K α radiation ($\lambda = 0.15418$ nm) and 2 θ ranging from 3 to 50 ° with an increment of 0.02 ° and a scanning rate of 10 °/min. The FT-IR spectrum was measured in KBr pellets in the range 4000-400 cm⁻¹ on a Thermo Scientific spectrometer. The UV-Vis absorption was measured with a PERSEE UV-Vis-NIR spectrophotometer. Mott-Schottky measurements and short circuit photocurrent response was performed on a CHI660E electrochemical workstation from Shanghai Chenhua Instrument Co., Ltd. Inductively coupled plasma optical emission spectrometry (ICP-OES) were performed on an Optima 8000 from PerkinElmer. Xray photoelectron spectroscopy (XPS) were carried out on a Nexsa[™] X instrument from Thermo Scientific[™]. The Brunauer-Emmett-Teller (BET) surface areas was determined by BSD-PS1 instrument from BeiShiDe Instrument technology (Beijing) Co. Ltd.

X-ray crystallography

Crystallographic diffraction data for **JOU-22** were recorded on an Oxford Gemini S Ultra diffractometer with graphite monochromatized Cu-*K* α radiation ($\lambda = 1.5418$ Å) at room temperature. the structure was solved by Direct Method of SHELXT-2016 and refined by full-matrix least-squares techniques by using the SHELXL-2016 program.¹ All nonhydrogen atoms were refined with anisotropic temperature parameters. All hydrogen atoms were placed in geometrically idealized position as a riding mode. The solvent molecules in the crystal are highly disordered and are removed by using the SQUEEZE routine of PLATON.² ISOR command was used to restrict O1W and O2 for ADP alert. The crystallographic data for **JOU-22** were summarized in Table S1, and the selected bond lengths and angles are listed in Table S2. CCDC number for **JOU-22** is 2026455.

	JOU-22	
Empirical formula	C ₈ H ₆ O ₆ Fe	
Formula weight	253.98	
Temperature / K	100.00(10)	
Wavelength / Å	1.5418	
Crystal system	tetragonal	
Space group	<i>I</i> 4 ₁ 22	
<i>a</i> / Å	15.1494(10)	
b / Å	15.1494(10)	
<i>c</i> / Å	12.0558(2)	
lpha / °	90	
β / °	90	

 Table S1. Crystal data and structure refinements for JOU-22.

γ / °	90		
Volume / Å ³	2766.86(6)		
Ζ	8		
Reflns coll./unique	3320/		
<i>F</i> (000)	1024.0		
Density / g cm ⁻³	1.570		
μ / mm ⁻¹	9.050		
R _{int}	0.0219		
Goodness-of-fit on F ²	1.017		
<i>R</i> 1, <i>wR</i> 2 [I>2σ(I)] ^a	0.0329, 0.1021		
<i>R</i> 1, <i>wR</i> 2 (all data) ^a	0.0339, 0.1032		
${}^{a}R_{1} = \sum F_{0} - Fc / \sum F_{0} ; \ wR_{2} = \sum [w(F_{0}{}^{2} - Fc^{2})^{2}] / \sum [w(F_{0}{}^{2})^{2}]^{1/2}.$			

Table S2. Selected bond lengths (Å) and angles (°) for JOU-22.^a

1.954(2)	Fe1-O3#2	2.022(2)
1.954(2)	Fe1-O2#1	2.026(3)
2.022(2)	Fe1-O2#3	2.026(3)
90.57(12)	O1#1-Fe1-O2#1	89.37(10)
169.60(11)	O1-Fe1-O3#2	169.66(9)
89.37(10)	O3-Fe1-O2 ^{#1}	90.57(14)
100.91(14)	O3 ^{#2} -Fe1-O2 ^{#3}	90.62(13)
88.33(12)	O2 ^{#1} -Fe1-O2 ^{#3}	80.36(15)
90.68(12)	O3-Fe1-O2 ^{#3}	90.62(13)
90.68(12)	O3-Fe1-O3 ^{#2}	178.54(17)
88.32(12)		
	1.954(2) 1.954(2) 2.022(2) 90.57(12) 169.60(11) 89.37(10) 100.91(14) 88.33(12) 90.68(12) 90.68(12) 88.32(12)	1.954(2)Fe1-O3#2 $1.954(2)$ Fe1-O2#1 $2.022(2)$ Fe1-O2#3 $90.57(12)$ O1#1-Fe1-O2#1 $169.60(11)$ O1-Fe1-O3#2 $89.37(10)$ O3-Fe1-O2#1 $100.91(14)$ O3#2-Fe1-O2#3 $88.33(12)$ O2#1-Fe1-O2#3 $90.68(12)$ O3-Fe1-O3#2 $88.32(12)$ C3-Fe1-O3#2

^a Symmetry transformation used to generate equivalent atoms: #1, 0.5 - *x*, *y*, 0.25 + *z*; #2, 0.5 - *x*, 0.5 - *y*, 1.5 - *z*; #3, *x*, 0.5 - *y*, 1.25 - *z*.

Table S3. Optimization of synthesis conditions of JOU-22 crystal.

Fig. S1. SEM image of JOU-22 powder. 30 μ L HF was added during synthesis process.

Fig. S2. TGA curve of JOU-22 crystals.

Fig. S3. (a) XPS high resolution spectra of iron in **JOU-22** crystals before and after photocatalytic reaction. (b) XPS spectra of **JOU-22** crystals before and after photocatalytic reaction.

Fig. S4. Comparison of degradation efficiency of dichromate anions over JOU-22

crystals and powder.

Fig. S5. As the proton concentration increases, the protonation of **JOU-22** makes its surface charge turn from negative to positive.

Fig. S6. (a) Photocatalytic activity of **JOU-22** almost unchanged over five reaction rounds. (b) PXRD pattern of **JOU-22** after five reaction rounds consists well with that

of as-synthesized samples.

Fig. S7. Comparison of the Cr(IV) reduction rate over different MOF materials.

Fig. S8. MIL-53(Fe) can stable in aqueous solution with pH range from 2 - 10.

Fig. S9. Kinetics of photocatalytic MB degradation under different conditions.

References

- (a) G. M. Sheldrick, *Acta Crystallogr. A*, 2008, A64, 112-122; (b) G. M. Sheldrick, *Acta Crystallogr. C*, 2015, C71, 3-8.
- 2. A. L. Spek, J. Appl. Crystallogr, 2003, 36, 7-13.