Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

## Supplementary material for

## Influence of La-doping on the CuO/ZrO<sub>2</sub> catalysts with different Cu content for hydrogenation of dimethyl oxalate to ethylene glycol

## Jian Ding<sup>a, b, c, \*</sup>, Meihui Wang<sup>a</sup>, Huimin Liu<sup>a</sup>, Zhenfeng Wang<sup>d</sup>, Xiaohui Guo<sup>a</sup>,

## Gewen Yu<sup>a, b, c</sup>, Yaxiong Wang<sup>a, b, c</sup>

 <sup>a</sup> Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, PR China
<sup>b</sup> Inner Mongolia Cooperative Innovation Center for Green Coal Mining & Green Utilization, Baotou 014010, Inner Mongolia, PR China

<sup>c</sup> Inner Mongolia Engineering Research Center of Coal Cleaning & Comprehensive
Utilization, Baotou 014010, Inner Mongolia, PR China

<sup>d</sup> School of Materials and Metallurgy, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, PR China

<sup>\*</sup> Corresponding author.

E-mail: dingjian@imust.edu.cn; Tel.: +86 0472 5953321.

| Catalyst           | $Cu(NO_3)_2 \cdot 3H_2O$ | $La(NO_3)_3 \cdot 6H_2O$ | $Zr(NO_3)_4 \cdot 5H_2O$ | SA                    |
|--------------------|--------------------------|--------------------------|--------------------------|-----------------------|
| 5CZ/ <b>5CLZ</b>   | 0.1888/ <b>0.1888</b>    | -/0.0312                 | 3.2668/ <b>3.2259</b>    | 4.6409/ <b>4.6172</b> |
| 10CZ/10CLZ         | 0.3775/ <b>0.3775</b>    | -/0.0312                 | 3.0490/ <b>3.0081</b>    | 4.5733/ <b>4.5489</b> |
| 20CZ/20CLZ         | 0.7550/ <b>0.7550</b>    | -/0.0312                 | 2.6134/ <b>2.5726</b>    | 4.4379/ <b>4.4141</b> |
| 28CZ/28CLZ         | 1.0570/ <b>1.0570</b>    | -/0.0312                 | 2.2650/ <b>2.2241</b>    | 4.3296/ <b>4.3057</b> |
| 33CZ/ <b>33CLZ</b> | 1.2458/ <b>1.2458</b>    | -/0.0312                 | 2.0472/ <b>2.0063</b>    | 4.2619/ <b>4.2382</b> |
| 39CZ/ <b>39CLZ</b> | 1.4723/ <b>1.4723</b>    | -/0.0312                 | 1.7858/ <b>1.7450</b>    | 4.1807/ <b>4.1573</b> |
| 58CZ/ <b>58CLZ</b> | 2.1895/ <b>2.1895</b>    | -/0.0312                 | 0.9583/ <b>0.9174</b>    | 3.9235/ <b>3.8986</b> |
| JOCE/JOCEE         | 2.1095/2.1095            | /0.0012                  | 0.9505/0.9171            | 3.723370.0            |

Table S1. The input of raw materials needed for preparation of wCZ and wCLZ (g).

The exposed Cu surface area and Cu dispersion was measured by N<sub>2</sub>O oxidation and followed H<sub>2</sub> reduction. Generally, catalysts (60 mg) were first reduced in 5% H<sub>2</sub>/N<sub>2</sub> mixture at a flow rate of 30 mL min<sup>-1</sup> with a ramping rate of 10 °C min<sup>-1</sup> until 350 °C. The amount of hydrogen consumption in the first TPR (TPR1) was denoted as X. And then the reactor was purged with Ar to 50 °C. N<sub>2</sub>O (30 mL min<sup>-1</sup>) was injected to oxidize surface copper atoms to Cu<sub>2</sub>O at 50 °C for 15 min. Subsequently, the reactor was flushed with Ar to remove the oxidant. Finally, another TPR experiment was performed in 5% H<sub>2</sub>/N<sub>2</sub> at a flow rate of 30 mL min<sup>-1</sup>. Hydrogen consumption in the second TPR (TPR1) was denoted as Y. The dispersion of Cu and exposed Cu surface area were calculated according to the equations which were shown below: Reduction of all copper atoms:

 $CuO + H_2 \rightarrow Cu + H_2O$ , hydrogen consumption in the first TPR1 = X.

The decomposition of N<sub>2</sub>O on the surface of metallic copper:

$$2Cu+N_2O = N_2 + (Cu-O-Cu)s.$$

Reduction of surface copper atoms only:

 $Cu_2O + H_2 \rightarrow 2Cu + H_2O$ , hydrogen consumption in this TPR2 = Y;

And the dispersion of Cu and exposed Cu surface area were calculated as [Eq. (1, 2)]:

$$D = \frac{2Y}{X} \times 100\% \tag{1}$$

$$S = \frac{2Y \times N_{av}}{X \times M_{cu} \times 1.4 \times 10^{19}} = \frac{1353Y}{X} (m^2 - Cu / g - Cu)$$
(2)

where  $N_{av}$  is the Avogadro's constant,  $M_{Cu}$  is the relative atomic mass,  $1.4 \times 10^{19}$ comes from that an equal abundance of an average copper surface atom area of 0.0711 nm<sup>2</sup>, equivalent to  $1.4 \times 10^{19}$  copper atoms m<sup>-2</sup>.



Figure S1. XRD patterns of the  $ZrO_2$  powders calcined at 450, 550, 650, and 750 °C.



Figure S2. CO<sub>2</sub>-TPD profiles of as-prepared catalysts (a: wCZ; b: wCLZ and standard ZrO<sub>2</sub>).



Figure S3. NH<sub>3</sub>-TPD profiles of as-prepared catalysts (a: *w*CZ; b: *w*CLZ and standard ZrO<sub>2</sub>).



Figure S4. Cu 2p spectra of reduced catalysts (a1: 5CZ; a2: 5CLZ; b1: 33CZ; b2:

33CLZ; c1: 39CZ; c2: 39CLZ).



Figure S5. Zr 3d spectra of reduced catalysts (a1: 5CZ; a2: 5CLZ; b1: 33CZ; b2:

33CLZ; c1: 39CZ; c2: 39CLZ).



Figure S6. La 3d spectra of reduced 33CLZ catalysts.