Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information

Crystal Structures and Properties of High-nitrogenEnergeticSaltsBasedon(Z)-1,1-diamino-2-nitro-2-(1H-tetrazol-5-yl)etheneZhaoyang Yin,^a Yaqun Dong,^a Zhiwei Zeng,^a Wei Huang^{a*} and Yongxing Tang^{a*}[a] Z. Yin, Y. Dong, Z. Zeng, Dr. W. Huang, Prof. Y. Tang

School of Chemical Engineering, Nanjing University of Science and Technology,

Nanjing, 210094 China.

E-mail: yongxing@njust.edu.cn

Huang_Wei@njust.edu.cn

Crystal Structure Analysis	S3
NMR Spectra	S15
DSC Plots	S18
Lattice Energy for Heat of Formation	S20

Crystal Structure Analysis

Atom	Atom	Lengths [Å]
O(1)	N(13)	1.2679(13)
O(2)	N(13)	1.2739(14)
O(3)	N(20)	1.2648(14)
O(4)	N(20)	1.2821(13)
N(1)	C(1)	1.3280(16)
N(2)	C(1)	1.3314(16)
N(3)	C(1)	1.3266(16)
N(4)	C(2)	1.3267(16)
N(5)	C(2)	1.3267(17)
N(6)	C(2)	1.3280(16)
N(7)	C(3)	1.3287(16)
N(8)	C(3)	1.3211(16)
N(9)	C(5)	1.3381(16)
N(9)	N(10)	1.3436(16)
N(10)	N(11)	1.3030(16)
N(11)	N(12)	1.3392(15)
N(12)	C(5)	1.3421(15)
N(13)	C(4)	1.3617(15)
N(14)	N(15)	1.3410(14)
N(14)	C(8)	1.3431(15)
N(15)	N(16)	1.3004(16)
N(16)	N(17)	1.3445(15)
N(17)	C(8)	1.3417(16)
N(18)	C(6)	1.3221(16)
N(19)	C(6)	1.3259(16)
N(20)	C(7)	1.3612(15)
C(3)	C(4)	1.4597(16)
C(4)	C(5)	1.4679(16)
C(6)	C(7)	1.4559(16)
C(7)	C(8)	1.4750(15)

Table S1. Bond lengths [Å] for 2.

Atom	Atom	Atom	Angle/°
C(5)	N(9)	N(10)	104.80(11)
N(11)	N(10)	N(9)	110.05(11)
N(10)	N(11)	N(12)	109.15(11)
N(11)	N(12)	C(5)	105.43(10)
O(1)	N(13)	O(2)	117.45(10)
O(1)	N(13)	C(4)	120.57(10)
O(2)	N(13)	C(4)	121.98(10)
N(15)	N(14)	C(8)	105.32(10)
N(16)	N(15)	N(14)	109.16(10)
N(15)	N(16)	N(17)	110.35(10)
C(8)	N(17)	N(16)	104.49(10)
O(3)	N(20)	O(4)	117.56(10)
O(3)	N(20)	C(7)	120.25(10)
O(4)	N(20)	C(7)	122.19(10)
N(3)	C(1)	N(1)	119.45(12)
N(3)	C(1)	N(2)	120.61(11)
N(1)	C(1)	N(2)	119.92(12)
N(5)	C(2)	N(4)	119.77(12)
N(5)	C(2)	N(6)	120.35(12)
N(4)	C(2)	N(6)	119.87(12)
N(8)	C(3)	N(7)	118.15(11)
N(8)	C(3)	C(4)	121.62(11)
N(7)	C(3)	C(4)	120.23(11)
N(13)	C(4)	C(3)	119.99(10)
N(13)	C(4)	C(5)	118.90(10)
C(3)	C(4)	C(5)	121.05(10)
N(9)	C(5)	N(12)	110.56(11)
N(9)	C(5)	C(4)	126.82(11)
N(12)	C(5)	C(4)	122.58(11)
N(18)	C(6)	N(19)	118.71(11)
N(18)	C(6)	C(7)	119.21(11)
N(19)	C(6)	C(7)	122.07(11)
N(20)	C(7)	C(6)	120.03(10)
N(20)	C(7)	C(8)	118.80(10)
C(6)	C(7)	C(8)	121.17(10)
N(17)	C(8)	N(14)	110.67(10)
N(17)	C(8)	C(7)	127.36(11)
N(14)	C(8)	C(7)	121.93(10)

 Table S2. Bond angles [°] for 2.

Atom	Atom	Atom	Atom	Angle/°
C(5)	N(9)	N(10)	N(11)	-0.80(15)
N(9)	N(10)	N(11)	N(12)	0.70(16)
N(10)	N(11)	N(12)	C(5)	-0.30(15)
C(8)	N(14)	N(15)	N(16)	-0.59(14)
N(14)	N(15)	N(16)	N(17)	0.58(14)
N(15)	N(16)	N(17)	C(8)	-0.31(14)
O(1)	N(13)	C(4)	C(3)	-179.18(10)
O(2)	N(13)	C(4)	C(3)	1.57(17)
O(1)	N(13)	C(4)	C(5)	3.59(16)
O(2)	N(13)	C(4)	C(5)	-175.66(10)
N(8)	C(3)	C(4)	N(13)	-0.35(17)
N(7)	C(3)	C(4)	N(13)	-179.28(10)
N(8)	C(3)	C(4)	C(5)	176.82(11)
N(7)	C(3)	C(4)	C(5)	-2.11(17)
N(10)	N(9)	C(5)	N(12)	0.61(15)
N(10)	N(9)	C(5)	C(4)	178.41(11)
N(11)	N(12)	C(5)	N(9)	-0.21(15)
N(11)	N(12)	C(5)	C(4)	-178.12(11)
N(13)	C(4)	C(5)	N(9)	19.10(18)
C(3)	C(4)	C(5)	N(9)	-158.10(12)
N(13)	C(4)	C(5)	N(12)	-163.34(11)
C(3)	C(4)	C(5)	N(12)	19.46(17)
O(3)	N(20)	C(7)	C(6)	-176.40(10)
O(4)	N(20)	C(7)	C(6)	3.79(17)
O(3)	N(20)	C(7)	C(8)	3.95(16)
O(4)	N(20)	C(7)	C(8)	-175.86(10
N(18)	C(6)	C(7)	N(20)	178.84(11)
N(19)	C(6)	C(7)	N(20)	-1.66(18)
N(18)	C(6)	C(7)	C(8)	-1.52(17)
N(19)	C(6)	C(7)	C(8)	177.98(11)
N(16)	N(17)	C(8)	N(14)	-0.07(14)
N(16)	N(17)	C(8)	C(7)	177.64(11)
N(15)	N(14)	C(8)	N(17)	0.41(14)
N(15)	N(14)	C(8)	C(7)	-177.45(10)
N(20)	C(7)	C(8)	N(17)	15.07(18)
C(6)	C(7)	C(8)	N(17)	-164.58(12)
N(20)	C(7)	C(8)	N(14)	-167.45(11)
C(6)	$\dot{C(7)}$	C(8)	N(14)	12.90(17)

Table S3. Torsion angles [°] for 2.

D	Н	A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N(1)	H(1A)	O(3)	0.87(2)	2.03(2)	2.8854(15)	167.5(18)
N(1)	H(1B)	$N(9)^{1}$	0.85(2)	2.55(2)	3.2389(16)	138.6(16)
N(1)	H(1B)	$N(10)^{1}$	0.85(2)	2.33(2)	3.0994(16)	150.6(17)
N(2)	H(2B)	$O(1)^{1}$	0.880(19)	2.428(18)	3.1031(15)	133.8(15)
N(2)	H(2B)	$N(9)^{1}$	0.880(19)	2.197(19)	3.0158(16)	154.5(16)
N(2)	H(2A)	$N(16)^2$	0.897(18)	2.186(18)	3.0525(16)	162.3(15)
N(3)	H(3B)	$N(15)^2$	0.822(19)	2.292(19)	3.0892(16)	163.5(16)
N(3)	H(3A)	O(4)	0.812(18)	2.119(19)	2.9164(15)	167.5(15)
N(4)	H(4A)	O(2)	0.82(2)	2.02(2)	2.8334(15)	173.7(18)
N(4)	H(4B)	$N(10)^{3}$	0.81(2)	2.69(2)	3.3621(17)	141.3(17)
N(4)	H(4B)	$N(11)^{3}$	0.81(2)	2.25(2)	3.0355(17)	164.5(17)
N(5)	H(5A)	$O(1)^{4}$	0.89(2)	2.25(2)	2.9672(14)	137.9(15)
N(5)	H(5B)	O(1)	0.900(19)	2.06(2)	2.9573(15)	171.1(17)
N(5)	H(5B)	O(2)	0.900(19)	2.650(19)	3.3399(15)	134.1(15)
N(6)	H(6A)	$N(10)^{3}$	0.86(2)	2.12(2)	2.9703(17)	169.7(16)
N(6)	H(6B)	$O(3)^{5}$	0.84(2)	2.49(2)	3.0459(15)	124.1(17)
N(6)	H(6B)	$N(9)^{4}$	0.84(2)	2.56(2)	3.2199(17)	136.5(18)
N(7)	H(7A)	O(3)	0.904(19)	2.458(18)	3.0951(14)	127.8(14)
N(7)	H(7A)	N(17)	0.904(19)	2.173(19)	3.0318(16)	158.2(16)
N(7)	H(7B)	N(12)	0.874(18)	1.978(18)	2.6921(16)	138.1(15)
N(8)	H(8A)	O(2)	0.924(18)	1.804(18)	2.5266(15)	133.0(16)
N(8)	H(8B)	N(16)	0.92(2)	2.18(2)	3.0064(16)	149.4(16)
N(8)	H(8B)	N(17)	0.92(2)	2.44(2)	3.1748(16)	137.8(16)
N(18)	H(18Å)	N(14)	0.89(2)	1.91(2)	2.6312(15)	136.9(17)
N(18)	H(18B)	$N(15)^{6}$	0.859(19)	2.408(18)	3.0371(15)	130.5(15)
N(19)	H(19A)	$N(11)^{7}$	0.87(2)	2.37(2)	3.0210(16)	131.5(17)
N(19)	H(19B)	O(4)	0.93(2)	1.81(2)2	.5412(16)	134.1(18)

Table S4. Hydrogen bonds for 2 [Å and °].

¹2-X,-Y,-Z;²+X,+Y,-1+Z; ³+X,+Y,1+Z; ⁴3-X,-Y,1-Z; ⁵2-X,-Y,1-Z; ⁶-X,1-Y,1-Z; ⁷1-X,1-Y,-Z

Atom	Atom	Lengths [Å]
01	N7	1.294(4)
O2	N7	1.267(4)
N1	N2	1.343(4)
N1	C4	1.344(4)
N2	N3	1.313(5)
N3	N4	1.350(4)
N4	C4	1.334(5)
N5	C2	1.313(5)
N6	C2	1.329(5)
N7	C3	1.350(4)
N8	C1	1.320(5)
N9	C1	1.315(5)
N10	C1	1.340(5)
N10	N11	1.409(5)
C2	C3	1.460(5)
C3	C4	1.472(5)

Table S5. Bond lengths [Å] for 3.

Atom	Atom	Atom	Angle/°
N2	N1	C4	104.9(3)
N3	N2	N1	109.2(3)
N2	N3	N4	109.9(3)
C4	N4	N3	104.5(3
O2	N7	01	117.8(3)
O2	N7	C3	120.9(3)
01	N7	C3	121.2(3)
C1	N10	N11	118.4(4)
N9	C1	N8	120.5(4)
N9	C1	N10	120.0(4)
N8	C1	N10	119.5(4)
N5	C2	N6	119.0(3)
N5	C2	C3	123.0(4)
N6	C2	C3	117.9(3)
N7	C3	C2	121.5(3)
N7	C3	C4	119.1(3)
C2	C3	C4	119.0(3)
N4	C4	N1	111.5(3)
N4	C4	C3	127.3(3)
N1	C4	C3	121.2(3)

 Table S6. Bond angles [°] for 3.

Atom	Atom	Atom	Atom	Angle/°
C4	N1	N2	N3	-0.2(4)
N1	N2	N3	N4	0.4(4)
N2	N3	N4	C4	-0.4(4)
N11	N10	C1	N9	5.1(6)
N11	N10	C1	N8	-175.8(4)
O2	N7	C3	C2	178.2(4)
O1	N7	C3	C2	-1.5(5)
O2	N7	C3	C4	-9.3(5)
O1	N7	C3	C4	171.0(3)
N5	C2	C3	N7	16.5(5)
N6	C2	C3	N7	-164.3(3)
N5	C2	C3	C4	-156.0(3)
N6	C2	C3	C4	23.3(5)
N3	N4	C4	N1	0.3(4)
N3	N4	C4	C3	-179.1(3)
N2	N1	C4	N4	0.0(4)
N2	N1	C4	C3	179.3(3)
N7	C3	C4	N4	52.2(5)
C2	C3	C4	N4	-135.1(4)
N7	C3	C4	N1	-127.1(4)
C2	C3	C4	N1	45.6(5)

Table S7. Torsion angles [°] for 3.

D	Η	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N5	H5A	N3 ¹	0.86	2.56	3.277(5)	140.9
N5	H5A	$N4^1$	0.86	2.06	2.879(5)	158.5
N5	H5B	01	0.86	2.03	2.621(5)	125.5
N6	H6A	$O2^1$	0.86	2.25	3.020(5)	148.6
N6	H6A	$N4^1$	0.86	2.69	3.362(5)	135.5
N6	H6B	$N1^2$	0.86	2.30	3.010(5)	140.2
N8	H8A	01	0.86	2.03	2.889(4)	176.3
N8	H8B	N2 ³	0.86	2.32	2.983(5)	133.9
N9	H9A	O2	0.86	2.11	2.967(5)	171.1
N9	H9B	$N1^4$	0.86	2.48	3.142(5)	134.2
N10	H10	N3 ⁵	0.86	2.15	2.933(5)	150.3
N11	H11B	O1 ⁶	0.83(5)	2.50(5)	3.230(6)	147(5)
1 -X,1/2	$+Y,1-Z;^{2}-1+$	+X,+Y,+Z;	³ +X,+Y,1+Z;	⁴ 1-X,-1/2+Y,1-2	Z; ⁵ 1+X,+Y,1+Z	<u> </u>

Table S8. Hydrogen bonds for 3 [Å and $^{\circ}$].

⁻-X,1/2+Y,1-Z; ⁻-1+X,+Y,+Z; ⁻+X,+Y,1+Z; ⁻1-X,-1/2+Y,1-Z; ⁶1-X,-1/2+Y,2-Z

Atom	Atom	Lengths [Å]
O(1)	N(15)	1.2708(15)
O(2)	N(15)	1.2658(15)
N(2)	C(4)	1.3238(18)
N(2)	N(3)	1.4139(17)
N(4)	C(4)	1.3253(16)
N(4)	N(5)	1.4104(16)
N(6)	C(4)	1.3284(18)
N(6)	N(7)	1.4135(15)
N(9)	C(3)	1.3149(16)
N(10)	C(3)	1.3253(16)
N(11)	C(1)	1.3353(17)
N(11)	N(12)	1.3385(16)
N(12)	N(13)	1.3107(17)
N(13)	N(14)	1.3381(17)
N(14)	C(1)	1.3363(17)
N(15)	C(2)	1.3513(17)
C(1)	C(2)	1.4711(17)
C(2)	C(3)	1.4475(17)

Table S9. Bond lengths [Å] for 5.

Atom	Atom	Atom	Angle/°
C(4)	N(2)	N(3)	118.94(11)
C(4)	N(4)	N(5)	118.81(11)
C(4)	N(4)	N(5)	118.21(11)
C(1)	N(11)	N(12)	104.88(11)
N(13)	N(12)	N(11)	109.44(10)
N(12)	N(13)	N(14)	109.62(10)
C(1)	N(14)	N(13)	104.76(11)
O(2)	N(15)	O(1)	118.16(11)
O(2)	N(15)	C(2)	122.63(11)
O(1)	N(15)	C(2)	119.21(12)
N(11)	C(1)	N(14)	111.29(11)
N(11)	C(1)	C(2)	122.24(11)
N(14)	C(1)	C(2)	126.43(12)
N(15)	C(2)	C(3)	120.61(11)
N(15)	C(2)	C(1)	118.41(11)
C(3)	C(2)	C(1)	120.93(10)
N(9)	C(3)	N(10)	118.90(11)
N(9)	C(3)	C(2)	121.97(11)
N(10)	C(3)	C(2)	119.11(11)
N(2)	C(4)	N(4)	120.35(12)
N(2)	C(4)	N(6)	119.90(11)
N(4)	C(4)	N(6)	119.74(11)

Table S10. Bond angles [°] for 5.

Atom	Atom	Atom	Atom	Angle/°
C(1)	N(11)	N(12)	N(13)	-0.27(13)
N(11)	N(12)	N(13)	N(14)	0.38(13)
N(12)	N(13)	N(14)	C(1)	-0.33(13)
N(12)	N(11)	C(1)	N(14)	0.06(14)
N(12)	N(11)	C(1)	C(2)	-178.07(10)
N(13)	N(14)	C(1)	N(11)	0.16(14)
N(13)	N(14)	C(1)	C(2)	178.19(11)
O(2)	N(15)	C(2)	C(3)	2.86(19)
O(1)	N(15)	C(2)	C(3)	-177.75(13)
O(2)	N(15)	C(2)	C(1)	-179.82(11)
O(1)	N(15)	C(2)	C(1)	-0.43(19)
N(11)	C(1)	C(2)	N(15)	-131.56(13)
N(14)	C(1)	C(2)	N(15)	50.62(17)
N(11)	C(1)	C(2)	C(3)	45.76(16)
N(14)	C(1)	C(2)	C(3)	-132.07(13)
N(15)	C(2)	C(3)	N(9)	17.81(18)
C(1)	C(2)	C(3)	N(9)	159.44(12)
N(15)	C(2)	C(3)	N(10)	-163.71(13)
C(1)	C(2)	C(3)	N(10)	19.03(17)
N(3)	N(2)	C(4)	N(4)	6.46(18)
N(3)	N(2)	C(4)	N(6)	-174.59(11)
N(5)	N(4)	C(4)	N(2)	-179.91(11)
N(5)	N(4)	C(4)	N(6)	1.13(18)
N(7)	N(6)	C(4)	N(2)	-9.37(18)
N(7)	N(6)	C(4)	N(4)	169.60(12)

 Table S11. Torsion angles [°] for 5.

D	Н	A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N2	H2	N11 ¹	0.837	2.202	2.930	145.47
N4	H4	N12 ₂	0.863	2.451	3.079	130.06
N6	H6	N3 ³	0.877	2.343	3.213	171.44
N9	H9A	$O1^4$	0.860	1.950	2.800	169.46
N9	H9B	O1 ⁵	0.860	2.627	3.273	132.85
N9	H9B	O2	0.860	2.020	2.607	124.71
N10	H10A	N14 ⁶	0.860	2.350	3.156	156.01
N10	H10B	N11	0.860	2.592	3.040	113.55
N10	H10B	N13 ⁷	0.860	2.234	3.062	161.59
N3	H3B	$O2^8$	0.927	2.367	3.146	141.57
N3	H3B	N5 ⁹	0.927	2.480	3.049	119.84
N5	H5A	N14 ¹⁰	0.896	2.359	3.194	155.16
N5	H5B	N7 ¹¹	0.929	2.524	3.154	125.36
N5	H5B	N11 ¹²	0.929	2.462	3.202	136.67
N7	H7A	N12 ¹³	0.922	2.259	3.143	160.67
N7	H7B	O2	0.886	2.189	2.897	136.54

Table S12. Hydrogen bonds for 5 [Å and $^{\circ}$].

Figure S2. ¹³C NMR spectrum of 2.

Figure S4. ¹³C NMR spectrum of 3.

Figure S6. ¹³C NMR spectrum of 5.

DSC Plot

Figure S7. DSC plot of 2.

TA Instruments Trios V5.0.0.44616

Figure S8. DSC plot of 3.

Figure S9. TG-DSC plot of 3.

Figure S10. DSC plot of 5.

C 1	ΔH_L	ΔH_{f}^{Cation}	ΔH_{f}^{anion}	$\Delta H_{f}{}^{298}$
Compounds	(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)
G-TzFOX	492.29	575.85	147.14	230.70
AG-TzFOX	482.79	667.41	147.14	331.75
TAG-TzFOX	466.47	871.47	147.14	552.15

 Table S13. Lattice Energy for Heat of Formation.