Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

supplementary information for New Journal of Chemistry

Quantitative and Systematical Designing Fluorophores Enables Ultrasensitive Distinguishing Carbonyls

Lei Shi, a Chenxu Yan, b Yunyu Li, a Lixiang Yang, c Wenle Mao, b Wei Xia, a

Lingfan Zhang, ^{a*} Yu Chen ^b and Wenqing Zhang ^{a**}

- ^{a.} School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
- ^{b.} Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Centre, Institute of Applied Chemistry, East China University of Science and Technology, No.130 Meilong Road, Shanghai 200237, P. R. China.
- ^{c.} Shenzhen Bay Laboratory, BayRay Innovation Centre, No.9 Duxue Road, Shenzhen, 518000, P. R. China

Data Availability.

The authors declare that the main data supporting the findings of this study are

available within the article and its Supplementary Information files. Extra data are

available from the corresponding author upon request.

Table of Contents

Absorption and fluorescence measurement	S3
Preparation of UHPLC-FLD work solution	S4
Synthetic route of NH-4	S5
The kinetic fitting curves	S5
The plots of rate constants k _{obs} vs negative charge population	S5
The ¹ H NMR spectra of NH-1~7	S6
The ¹³ C NMR spectra of NH-2~7	S7
Tables	S8
LUMO energies of NH-1~7	S8
HOMO energies of NH-1~7	S8
The C…C distances of naphthalimide cyclic	S9
The rate constants k _{obs} of NH-1~6	S9
The delta Gibbs free energy ΔG (kcal·mol ⁻¹) of reaction	S10

Characterization of fluorescent reagent

High-resolution mass spectra (HRMS) were obtained on LCT Premier XE spectrometer, ESI-TOF (Waters, United States). The ¹H and ¹³C NMR spectra were recorded on an AM 400 spectrometer, using TMS as an internal standard (Bruker United States) (Supplementary figure Fig. S4). Yield of **NH-4**: 85%; orange solid; mp 141–144 °C; FTIR (neat, ν/cm^{-1}): 3438 (active hydrogen, N—H), 3321 (naphthalimide ring, C—H), 2971(tertiary carbon, C—H), 1682 (C=O), 1642, 1576, 1539 (C=C, naphthalimide ring), 1357, 1395 (C=C, naphthalimide ring), 1246 (C—N), 774 (in naphthalimide plane, C=C), 750 (δ , N—H);¹HNMR (100 MHz, CDCl₃) δ : 1.58 (6H, s, 2×CH₃), 3.84 (4H, s, NH₂), 5.41–5.48 (H, t, *J* = 7.0 Hz, CH), 6.56 (H, s, 2H, NH), 7.22–7.24 (H, d, *J* = 6.6 Hz, CH-5'), 7.62–7.65 (H, t, *J* = 6.6 Hz, CH-6'), 8.00–8.03 (H, d, *J* = 6.6 Hz, CH-3'), 8.51–8.53 (H, d, *J* = 6.6 Hz, CH-2'), 8.56–8.52 (H, d, *J* = 6.6 Hz, CH-3'). ESI-MS = 268 (M - H); HRMS *Calculated. for* C₁₅H₁₄N₃O₂: 268.1086. Found; 268.1075.

Absorption and fluorescence measurement

The samples for absorption spectra were prepared by successively placing acetonitrile (ACN, 850 μ L), H₂O (950 μ L) and one of **NH-1~7** (200 μ L, 0.5 mM) in 3 mL cuvettes and were tested in a Varian Cary 500 UV/VIS spectrophotometer (Agilent, United States). Fluorescent measurements of the **NH-1~7-formaldehyde** were similar by placing acetonitrile (ACN, 750 μ L), H2O (950 μ L), one of **NH-1~7** (200 μ L, 0.5 mM) and formaldehyde stock solution (1.0 mM, 100 μ L) to obtain the final concentration of formaldehyde and fluorescent reagents both 0.05 mM in the 3

mL cuvettes. The slit width was set at 2.5 nm for excitation of 430 nm with photon multiplier voltage at 580 V on a Varian Cary Eclipse fluorescence spectrophotometer (Agilent, United States). The relative fluorescence quantum yield (Φf) was obtained by integrating the emission spectra of **NH-1~7-formaldehyde** to compare with Rhodamine 6G (Sigma-Aldrich, United States) and each sample was triply tested. The photography for fluorescent emission of sample vials (showed in Fig. 3a) were captured by a Canon EOS 70d digital SLR camera (Canon, Japan) with f/5.6, s-1.6 s, iso-100 at 5800 K (Shade) and f/5.6, s-1/20 s, iso-100 at 5800 K (Tint).

Preparation of UHPLC-FLD work solution

10 kinds of carbonyl species were involved in the UHPLC-FLD method development and validation., i.e. formaldehyde aqueous solution (37%) and acetaldehyde aqueous solution (40%) (Shanghai Chemicals, China), propylaldehyde (>95.0%), butyraldehyde (>98.0%), valeraldehyde (>98.0%), hexaldehyde (>98.0%), acetone (>99.5%), 2-Butanone (>99.0%), benzaldehyde (>98.0%) and mmethylbenzaldehyde (>97.0%) (Sigma-Aldrich, United States). The carbonyl solutions (0.01 mM - 0.001 nM) were diluted with initial mobile phase (ACN: water = 65:35, v/v) from standard stock solution (0.1 M). The fluorescent derivatization processes between carbonyls and **NH-4** were carried out at 25 °C for 15 min in 1.5 mL vials before testing. Briefly, 800 µL initial mobile phase was added to a vail, $100 \,\mu$ L of **NH-4** stock solution (0.5 mM) and $100 \,\mu$ L dilution solution of carbonyl was added in succession, 15 min later at 25 °C the vail was placed into UHPLC system for analysis. Figures

Fig. S1 Synthetic route of NH-4.

Fig. S2 The kinetic fitting curves of **NH-2~6** and formaldehyde, zero(a), first(b) and second(c) order. Note: the first order fitting curves were showing the best linearity.

Fig. S3 The plots of rate constants k_{obs} and the negative charge population with different theoretical calculation methods Electro-Static Potential (a), Mulliken charge (b) and Natural bonding orbital (c).

Fig. S4 The ¹H NMR spectra of NH-1~7 (tetramethylsilane, TMS as the internal standard, DMSO- d_6).

Fig. S5 The ¹³C NMR spectra of NH-2~7 (number of Scans 10000, tetramethylsilane,

TMS as the internal standard, Methanol- d_4).

Tables

LUMO Energy	NH-1	NH-2	NH-3	NH-4	NH-5	NH-6	NH-7
(eV)	(Methyl)	(Ethyl)	(n-Propyl)	(i-Propyl)	(Butyl)	(Pentyl)	(Benzyl)
Rea. Fluor. ^a	-2.454	-2.447	-2.446	-2.440	-2.445	-2.448	-2.487
Rea. Hydraz.	2.612	2.608	2.607	2.608	2.610	2.615	2.614
Prod. Fluor.	-2.438	-2.433	-2.432	-2.426	-2.429	-2.429	-2.469
Prod. Hydraz. ^b	-0.223	-0.223	-0.224	-0.223	-0.224	-0.226	-0.224

Table S1 LUMO energies of NH-1~7 with DFT, B3-LYP/6-311G*

^{a, b} "Rea." and "Prod." are representing the derivative reagents NH-1~7 and derivative products NH-1-formaldehyde ~ NH-7-formaldehyde. "Fluor." and "Hydraz." are representing the fluorescent naphthalimide moiety and hydrazine/ hydrazone moiety.

HOMO Energy	NH-1	NH-2	NH-3	NH-4	NH-5	NH-6	NH-7
(eV)	(Methyl)	(Ethyl)	(n-Propyl)	(i-Propyl)	(Butyl)	(Pentyl)	(Benzyl)
Rea. Fluor.	-6.373	-6.368	-6.365	-6.355	-6.363	-6.362	-6.387
Rea. Hydraz.	-6.164	-6.181	-6.183	-6.178	-6.176	-6.148	-6.151
Prod. Fluor.	-6.376	-6.37	-6.367	-6.357	-6.365	-6.371	-6.375
Prod. Hydraz.	-7.014	-7.016	-7.013	-7.017	-7.014	-7.013	-7.013
ΔE °	0.638	0.647	0.645	0.660	0.649	0.642	0.638
$\Phi_{ m f}$	65.97	78.31	77.25	88.04	76.13	72.00	67.27

Table S2 HOMO energies of NH-1~7 with DFT, B3-LYP/6-311G*

 $^{\rm c}$ ΔE is the energy gap of products (NH-x-formaldehyde) between fluorescent naphthalimide moiety and hydrazone moiety.

Number	NH-1	NH-2	NH-3	NH-4	NH-5	NH-6	NH-7
Number	(Methyl)	(Ethyl)	(n-Propyl)	(i-Propyl)	(Butyl)	(Pentyl)	(Benzyl)
1	3.8822	3.8815	3.8883	3.9133	3.8990	3.9077	3.8862
2	3.8806	3.8923	3.9032	3.9424	3.9151	3.9204	3.8845
3	3.7912	3.8053	3.8152	3.8667	3.8174	3.8157	3.7998
4	3.7577	3.7602	3.7636	3.7981	3.7612	3.7666	3.7524
4a	3.8522	3.8522	3.8576	3.8740	3.8669	3.8755	3.8583
5	3.9038	3.9104	3.9139	3.9706	3.9199	3.9491	3.9225
6	3.9121	3.9234	3.9388	3.9929	3.9481	3.9751	3.9612
7	3.8183	3.8172	3.8364	3.8629	3.8393	3.8502	3.8834
8	3.7596	3.7600	3.7622	3.7687	3.7519	3.7661	3.8044
8a	3.8518	3.8594	3.8491	3.8592	3.8540	3.8515	3.8624
Average	3.8410	3.8462	3.8528	3.8849	3.8573	3.8678	3.8615

Table S3 The C···C distances of naphthalimide cyclic ^d

^d DFT calculation at B3-LYP/6-31++G** level.

Table S4 The rate constants k_{obs} of NH-1~6 under pseudo-first order equation $^{\rm e}$

kinetic data	NH-2	NH-3	NH-4	NH-5	NH-6
(s ⁻¹)	(Ethyl)	(n-Propyl)	(i-Propyl)	(Butyl)	(Pentyl)
k _{obs} , (283 K)	1.070×10 ⁻³	0.985×10 ⁻³	1.164×10 ⁻³	0.970×10 ⁻³	0.812×10 ⁻³
\mathbb{R}^2	0.9989	0.9996	0.9971	0.9996	0.9965
k _{obs} , (296 K)	2.005×10-3	1.914×10 ⁻³	2.278×10-3	1.891×10 ⁻³	1.648×10 ⁻³
\mathbb{R}^2	0.9983	0.9989	0.9998	0.9984	0.9998
k _{obs} , (313 K)	3.825×10 ⁻³	3.566×10 ⁻³	4.229×10 ⁻³	3.500×10 ⁻³	3.064×10 ⁻³
R ²	0.9996	0.9999	0.9990	0.9991	0.9997

 e All these kinetics data were obtained at target temperature ± 0.5 K and repeated 5

times.

Transition state	distances/Å			Bond angle/degree				
Transition state	N ² -C	C-O ¹	О ¹ -Н	H-N ²	H-N ² -C	N ² -C-O ¹	C-O ¹ -H	O ² -H-N ²
Trans. 1 (H ₃ O ⁺)	1.460	1.453	1.420	1.896	101.7	110.5	108.3	135.1
Trans. 1 (H ₂ O)	1.547	1.381	1.170	1.078	101.4	106.8	103.5	148.3
Trans. 1 (H ⁺)	1.474	1.485	1.207	1.383	73.9	94.1	78.6	113.3
Trans. 2 (H_3O^+)	1.291	2.307	0.987	-	-	114.1	112.5	-
Trans. 2 (H ₂ O)	1.319	2.009	1.112	1.151	108.6	107.8	88.8	144.7
Trans. 2 (H ⁺)	1.284	3.059	-	-	-	106.7	177.3	-

Table S5 Selected geometrical data of structures in the reaction of hydrazine NH-4 and formaldehyde with H_3O^+ , H_2O and H^+ at B3-LYP/6-311+G**.

Table S6 Taking the NH-4 with formaldehyde as an example to verify the delta Gibbs

Gibbs free	Reactant	Popularit TS1 IM	TS2	Product	Eyring	
energy	Keactant	151 111		132	rioduci	function
H ₃ O ⁺	0	23.44	-0.75	12.74	-8.79	
H ₂ O	0	9.03	-9.09	25.28	-24.18	-7.88
H^{+}	0	40.02	-5.01	-5.13	-8.62	