Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information for

Palladium Nanoparticles Supported on Exfoliated g-C₃N₄ As Efficient Catalysts for Selective Oxidation of Benzyl Alcohol by Molecular Oxygen

Xin-Tong Yi, Tong Zhao, Fei Wang, Jie Xu *, Bing Xue **

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Gehu Middle Road 21, Changzhou, Jiangsu 213164, PR China

Preparation of mesostructured g-C₃N₄

The mesoporous g-C₃N₄ (mp-C₃N₄) was prepared according to an established nanocasting method reported by Antonietti et al ¹. 4 g of cyanamide was dissolved in 16 g of aqueous suspensions (40wt%) of 12-nm silica spheres (Ludox HS40, Aldrich) under vigorous stirring. The mixture was heated in an oil bath at 50 °C under stirring overnight to remove water. Next, the resultant white solid was ground in a mortar, transferred into a covered crucible, and heated at 3 °C min⁻¹ up to 550 °C and then treated for further 4 h. Afterwards, the as-synthesized yellow powder was ground and immersed into 200 mL of NH₄HF₂ aqueous solution (4 mol L⁻¹, 100 mL) for 2 d to remove the template. Then, the dispersion was centrifuged and the yellow precipitate was washed using distilled water and ethanol for several times. Finally, the yellow sample was dried at 50 °C under vacuum overnight and the mass of the obtained g-C₃N₄ was *ca.* 1.8 g.

^{*} Corresponding author. Tel.: +86-519-86330135; E-mail: <u>shine6832@163.com</u> (J. Xu)

^{**} Corresponding author. Tel.: +86-519-86330135; E-mail: xuebing_cn@163.com (B. Xue)

Fig. S1 TEM images of g-C₃N₄.

Fig. S2 The histogram of the particle size distribution of Pd in $3Pd/eg-C_3N_4$.

Fig. S3 FT-IR spectra of $g-C_3N_4$ (a), $eg-C_3N_4-450$ (b), $eg-C_3N_4-500$ (c), $eg-C_3N_4-550$ (d), $3Pd/eg-C_3N_4$ (e), $3Pd/eg-C_3N_4$ -IMP (f), $3Pd/eg-C_3N_4-H_2Ar$ (g), and $3Pd/eg-C_3N_4$ -

R (h).

Fig. S4 N 1s (A) and Pd 3d (B) spectra of the recycled 3Pd/eg-C₃N₄ catalyst.

presence of various solvents ^a .		
Solvent	Con. (%)	Sel. (%)
toluene	70	>99
<i>n</i> -heptane	72	>99
trifluorotoluene	81	>99
ethanol	25	>99
water	9	>99

Table S1 Catalytic performances of 3Pd/eg-C₃N₄ in selective oxidation of BZA in the

^a The reaction conditions are as follows: 3 mL of BZA, 3 mL of solvent, $v_{(O2)} = 20$ mL \min^{-1} , $W_{\text{catal.}}$ = 50 mg, T = 90 °C, and t = 4 h.

References

1 F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Angew. Chem. Int. Ed., 2006, 45, 4467-4471.