Coupling of fluorescence and adsorptive properties of biomass based cellulose-CdS nanocomposite for alleviation of water contaminants

Komal^a, Deepeka^a, Jaspreet Kaur^b, Vinod Kumar^c, K.B. Tikoo^c, Anupama Kaushik^{d*} and Sonal

Singhal^{a*}

^aDepartment of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.

^bEnergy Research Centre, Panjab University, Chandigarh, India-160014.

° HR-TEM Facility Lab, National Institute of Pharmaceutical Education and Research (NIPER), SAS

Nagar-160062, Punjab, India.

^dDr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, India.

E-mail: <u>*sonal1174@gmail.com</u>; <u>sonal@pu.ac.in</u>, <u>*anupamachem@gmail.com</u>

Fig. S1. Schematic illustration of synthetic methodology for CNF-CdS nanocomposite.

Fig.S2. Effect of excitation wavelength on emission spectra of CNF-CdS nanocomposite.

Fig.S3. Fluorescence emission spectra for CNF-CdS nanocomposite with respect to that of water.

Fig. S4. Influence of buffer system on the fluorescence signal of CNF-CdS nanocomposite with and without the presence of fluoroquinolones.

Fig. S5. Influence of reaction time on the fluorescence enhancement of CNF-CdS nanocomposite in the presence of fluoroquinolones.

Fig. S6. Effect of concentration of CdS on the fluorescence intensity of CNF-CdS nanocomposite.

Fig. S7. Influence of electrolyte concentration on the fluorescence intensity of CNF-CdS nanocomposite in the absence and presence of fluoroquinolones.

Fig. S8. Effect of contact time for the adsorption of pollutants over CNF-CdS nanocomposite.

Fig. S9. Effect of adsorbent quantity for the adsorption of pollutants over CNF-CdS nanocomposite.

Fig. S10. Freundlich isotherm curves for (a) RhB, (b) MB, (c) SO and (d) CPF for adsorption over CNF-CdS nanocomposite.

Fig. S11. Pseudo-first-order kinetic curves for (a) RhB, (b) MB, (c) SO and (d) CPF for adsorption over CNF-CdS nanocomposite.

Fig. S12. Reusability studies for the adsorption of RhB, MB, SO nad CPF over CNF-CdS nanocomposite.

Table S1: Different parameters computed from pseudo-first-order and pseudo-second-order models for the adsorption of RhB, MB, SO and CPF onto the surface of CNF-CdS nanocomposite

	Pseudo-first-order			Pseudo-second-order		
Pollutant	q _e (mg g ⁻¹)	k ₁ (min ⁻¹)	R ²	q _e (mg g ⁻¹)	k ₂ (g mg ⁻¹ min ⁻¹)	R ²
RhB	1.0199	0.0001	0.3477	14.0643	0.4012	1.0000
MB	1.0230	0.0001	0.8497	9.4070	0.2883	1.0000
SO	1.3486	0.0023	0.6824	9.8042	0.0226	0.9983
CPF	3.1557	0.0053	0.5520	27.9330	0.0012	0.9855