Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Controlled reduction of aromaticity of alkylated polyaromatic compounds by selective oxidation using H₂WO₄, H₃PO₄ and H₂O₂: A route for upgrading heavy oil fractions

Ewa Nowicka,^{a*} Meenakshisundaram Sankar,^a Robert L. Jenkins,^a David W. Knight,^a David J. Willock,^a Graham J. Hutchings,^a Manuel Francisco^b[†] and Stuart H. Taylor^{a*}

^a Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.

^b ExxonMobil Research & Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, USA.

Figure S1: ¹H NMR (500MHz, CDCl₃) of *a*) 2-octadecylpyrene (**9**) and *b*) the oxidation products obtained from 2-octadecylpyrene, with marked groups of protons A and D used for calculation of % of preserved aliphatic protons.

Figure S2. GC-MS analysis of 2-ethylnaphthalene oxidation products in toluene (2ethylnaphthalene, Rt= 19.35 mins; acetonaphthone, Rt=22.63 mins).

Figure S3. GC-MS analysis of 2-ethylnaphthalene oxidation products in chlorobenzene (2ethylnaphthalene, Rt= 19.30 mins; 5-ethyl phthalic acid, Rt=21.48 mins; acetonaphthone, Rt=22.65 mins; Rt=23.80 mins unidentified product).

Figure S4. GC-MS analysis of 2-ethylnaphthalene oxidation products in propionitrile (2-ethylnaphthalene, Rt=19.64 mins; naphthalene-2-yl-ethanol, Rt=22.51 mins; several column bleeding and unidentified products).

Figure S5. GC-MS analysis of 2-ethylnaphthalene oxidation products in acetonitrile.

(2-ethylnaphthalene Rt=19.27 mins, 5-ethyl phthalic acid, Rt=21.51mins; 6ethylnaphthalene-1,4-dione, Rt=22.67 mins; 6-ethyl-2-hydroxynaphthalene-1,4-dione, Rt=23.89 mins)

Figure S6: Comparison of ¹³C NMR spectra of 2-acetonaphtone standard (top) and reaction mixture from 2-ethylnaphthalene oxidation (bottom)

Reaction Conditions: Substrate 18.8 mmol, H₂WO₄ 0.153g (0.614mmol), H₂O₂ 35% 12 ml, Aliquat 336 0.24 ml, H₃PO₄ 10% 0.14 ml, CH₃CN 8 ml, T=65°C, t=20 h

Figure S7: Structures of a) phenanthrene and b) pyrene showing standard atom numberings used in this manuscript.

Figure S8: IR analysis of 2-octadecylpyrene oxidation products (organic layer)

Figure S9: MS analysis of 2-octadecylpyrene oxidation products with strong signal m/z 581.31.

Figure S10: MS analysis of 9-octadecylphenanthrene oxidation with strong signal m/z 462.34

5.0

Figure S11: ¹H NMR analysis of 9-octadecylphenanthrene oxidation products (500MHz, 1% TMS