Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Nickel-catalyzed electrocarboxylation of allylic halides with CO₂

La-Xia Wu,^a Fang-Jie Deng,^a Lin Wu,^a Huan Wang,^b Tai-jie Chen,^a Ye-Bin Guan^{*a} and Jia-Xing Lu^{**^b}

Contents

Materials and Instrument	.S2
Infrared characterization of Nickel(II) Complexes	.S2
Electrochemical behavior of Ni(dppm)Cl ₂	S2
NMR characterization	.S3
References	.S8

1. Materials and Instrument

Galvanostatic electrosynthesis was performed using a digital direct current-regulated power supply (HY3005MT, HYelec[®] China). Voltammetric measurements were conducted using electrochemical station (CHI660E, Chenhua) in a conventional three-electrode cell. The product yield was determined by high-performance liquid chromatography (HPLC) instrument (DIONEX Ultimate 3000 pump) (Thermo Scientific, Germering, Germany) equipped with a UV (RS Variable Wavelength) (Thermo Scientific, Germering, Germany) detector. ¹HNMR spectra were recorded on an AVANCE 500 (500 MHz, Bruker, Germany) spectrometer in CDCl₃ with Me₄Si as an internal standard. All substrates, vinylacetic acid (**2d**) were used as received (Energy chemical, China). MeCN were kept over 4 Å molecular sieves.

2. Infrared characterization of Nickel(II) Complexes

Fig.S1 IR of Ni(dppm)Cl₂ (A); Ni(dppp) Cl₂ (B); Ni(dpim)₂Cl₂ (C); Ni(bpy)₃Cl₂ (D).

3. Electrochemical behavior of Ni(dppm)Cl₂.

Fig. S2 CV of Ni(dppm)Cl₂ in DMF-TEAI solution at 10 °C saturated with N₂ on GC electrode at a sweep rate of 100

mV ∎s⁻¹.

4. NMR characterization

 ${}^{2} \int_{4}^{1} \int_{5}^{6} \int_{0}^{7} \int_{0}^{9} \int_{0}^{10} OH (E)-4-Phenyl-3-butenoic acid 2a^{1}$

¹H NMR (500 MHz, CDCl₃) δ 7.43-7.38 (m, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.28-7.24 (m, 1H), 6.55 (d, J = 15.9 Hz, 1H), 6.31 (dt, J = 15.9, 7.1 Hz, 1H), 3.33 (dd, J = 7.1, 1.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 178.24 (C-10), 136.66 (C-6), 134.05 (C-7), 128.60 (C-2, C-4), 127.74 (C-3), 126.37 (C-1, C-5), 120.80 (C-8), 38.08 (C-9) ppm.

^{O UH} $2 \int_{5}^{6} \int_{7}^{6} \int_{8}^{9}$ 2-phenyl-3-butenoic acid $3a^{1}$

¹H NMR (500 MHz, CDCl₃) δ 7.44 -7.29 (m, 5H), 6.24 (ddd, J = 17.7, 10.2, 8.0 Hz, 1H), 5.40-5.05 (m, 2H), 4.36 (d, J = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 178.71 (C-10), 137.40 (C-6), 135.00 (C-8), 128.86 (C-2, C-4), 128.15 (C-1, C-5), 127.67 (C-3), 118.15 (C-9), 55.58 (C-7) ppm.

1 COOH 3-Methyl-3-butenoic acid $2f^2$

1H NMR (500 MHz, $CDCl_3$) δ 4.98 (p, J = 1.6 Hz, 1H), 4.91 (t, J = 1.5 Hz, 1H), 3.11 (d, J = 1.2 Hz, 2H), 1.86 (s, J = 1.1 Hz, 3H) ppm.

СООН (E)-3-Pentenoic acid 2h^{3, 4}

¹H NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 5.82-5.40 (m, 2H), 3.12 (dd, J =6.9, 6.6 Hz, 2H), 1.79-1.56 (m, 3H) ppm.

соон 2-Methyl-3-butenoic acid 3h^{5, 6}

¹H NMR (400 MHz, CDCl₃) δ 10.69 (s, 1H), 5.94 (ddd, J = 17.4, 10.3, 7.4 Hz, 1H), 5.27-5.09 (m, 2H), 3.19 (pt, J = 7.1, 1.2 Hz, 1H), 1.31 (d, J = 7.0 Hz, 3H) ppm.

 $^{\circ H}$ 4-methylpent-3-enoic acid $2j^7$

¹H NMR (500 MHz, CDCl₃) δ 6.07 (dd, J = 10.0, 10.0 Hz, 1H), 5.19-5.12 (m, 2H), 1.35(s, 6H) ppm.

 \times 2,2-dimethylbut-3-enoic acid 3j⁸

¹H NMR (500 MHz, CDCl₃) δ 5.33-5.29 (m, 1H), 3.10 (d, J = 10.0 Hz, 2H), 1.77 (d, J = 5.0 Hz, 3H), 1.66 (d, J = 5.0 Hz, 3H).

¹³CNMR (101 MHz, CDCl₃) of (*E*)-phenyl-3-butenoic acid **2a**

5/8

 $^1\text{HNMR}$ (500 MHz, $\text{CDCl}_3)$ of 4-methylpent-3-enoic acid 2j

¹HNMR (500 MHz, CDCl₃) of 2,2-dimethylbut-3-enoic acid 3j

Reference

1. L.-X. Wu, Y.-G. Zhao, Y.-B. Guan, H. Wang, Y.-C. Lan, H. Wang and J.-X. Lu, *RSC Advances*, 2019, **9**, 32628-32633.

2. D.-F. Niu, L.-P. Xiao, A-J. Zhang, G.-R. Zhang, Q.-Y. Tan, J.-X. Lu, *Tetrahedron*, 2008, **64**, 10517–10520.

3. J. Thibonnet, M. Abarbri, J.-L. Parrain and A. Duchêne, Tetrahedron, 2003, 59, 4433-4441.

4. S. J. Zhang, W. X. Hu, Synthetic Communications, 2010, 40, 3093-3100.

5. H. A. Duong, P. B. Huleatt, Q. W. Tan and E. L. Shuying, *Org Lett*, 2013, **15**, 4034-4037.

6. B. Miao and S. Ma, Chem Commun, 2014, 50, 3285-3287.

7. S. M. Smith, N. C. Thacker and J. M. Takacs, J Am Chem Soc, 2008, 130, 3734-3735.

8. Z. Gu, A. Zakarian, Org. Lett., 2011, 13, 1080-1082.