Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Mononuclear Mn Complexes Featuring N, S-/N, N-donor and 1,3,5-triaza-7-phosphaadamantane ligands: Synthesis and Electrocatalytic Properties

Vishakha Kaim and Sandeep Kaur-Ghumaan*

Department of Chemistry, University of Delhi, Delhi 110007, India

Email: skaur@chemistry.du.ac.in

Electronic Supplementary Information

New Journal of Chemistry

Figure S1. Crystal packing of complex **1** along the *b* axis.

Figure S2. FTIR spectra for complexes **1** (—) and **2** (—) in dichloromethane.

Figure S3. ¹H NMR spectra for complexes (a) **1** and (b) **2** (400 MHz, CDCl₃, 298 K).

Figure S4. ^{31}P { $^{1}H} NMR spectra for complexes (a) <math display="inline">\boldsymbol{1}$ and (b) $\boldsymbol{2}$ (161.8 MHz, CDCl₃, 298 K).

Figure S5. Mass spectrum in acetonitrile for complex $\mathbf{1}$, m/z: M⁺ peak at 462.99.

Figure S6. Mass spectrum in acetonitrile for complex **2**, m/z: M⁺ peak at 446.03.

Figure S7. UV-Vis absorption spectra for complexes **1** (—) and **2** (—) in acetonitrile.

Figure S8. Cyclic voltammograms (0.1 Vs⁻¹) of CH₃CN (—), of CH₃CN and 19 mM (20 equiv.) TFA (—), of 1 (1 mM) (—) and of 2 (1 mM) (—) in the presence of 19 mM (20 equiv.) of TFA in CH₃CN at 0.1 Vs⁻¹.

Figure S9.Plots of $i_{cat} vs.$ [TFA]/mM for complexes 1 (\blacksquare) and 2 (\bullet) in 0.1 M [N(n-Bu₄)][PF₆]/ CH₃CN. The negative sign for i_{cat} has been ignored.

Figure S10. Dependence of i_{cat} on [catalyst] for complexes **1** (**\blacksquare**) and **2** (**\bullet**) in CH₃CN in the presence of 20 equiv. (19 mM) TFA. Lines are best fit lines to the data. The negative sign for i_{cat} has been ignored.

Figure S11. Plots of charge vs. time for controlled–potential electrolysis of blank TFA (- - -, 5.95 mM), complexes 1 (—) and 2 (—) (0.25 mM) in CH₃CN / 0.1 M [N(n-Bu₄)][PF₆] / 5.95 mM (20 equiv.) TFA.

 $TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.1198 \text{ C}}{96480C \cdot mol^{-1} \times 2 \times 2.5 \times 10^{-6} mol \times 1800} = 1.38 \times 10^{-4} \text{ s}^{-1}$

Eq. S1. The calculation of *TOF*-complex **1** (TFA).

 $TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.0799 \text{ C}}{96480C \cdot mol^{-1} \times 2 \times 2.5 \times 10^{-6} mol \times 1800} = 0.92 \text{ x } 10^{-4} \text{ s}^{-1}$ Eq. S2. The calculation of *TOF*- complex 2 (TFA).

Figure S12. CVs of CH₃CN/20 equiv. TFA (—), and complex **2** (0.25 mM) in CH₃CN in the presence of 5.95 mM (20 equiv.) TFA before (—) and after (—) 30 min of bulk electrolysis.

Figure S13. Cyclic voltammograms (0.1 Vs⁻¹) of CH₃CN: H₂O (1:1) (—), of CH₃CN: H₂O (1:1) and 7 mM (7 equiv.) CH₃COOH (—), of 1 mM 1 (—) and 2 (—) in the presence of 7 mM (7 equiv.) of CH₃COOH in CH₃CN: H₂O (1:1) at 0.1 Vs⁻¹.

Figure S14. Plots of i_{cat} vs. [CH₃COOH] / mM for complexes **1** (**■**) and **2** (**•**) in 0.1 M [N(n-Bu₄)][PF₆] / CH₃CN: H₂O (1:1). The negative sign for i_{cat} has been ignored.

Figure S15. Dependence of *i*_{cat} on catalyst concentration for complexes 1 (■) and 2 (●) in 0.1 M [N(n-Bu₄)][PF₆] / CH₃CN:H₂O (1:1) in the presence of 7 equiv. (7 mM) CH₃COOH. Lines are best fit lines to the data. The negative sign for *i*_{cat} has been ignored.

Figure S16. Plots of charge vs. time for controlled-potential electrolysis of blank CH₃COOH (-), complexes 1 (-), and 2 (-) (0.25 mM) in CH₃CN : H₂O / 0.1 M [N(n-Bu₄)][PF₆] / 6 mM (6 equiv.) CH₃COOH.

$$TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.4168 \text{ C}}{96480C \cdot mol^{-1} \times 2 \times 2.5 \times 10^{-6} mol \times 1800} = 4.8 \times 10^{-4} \text{ s}^{-1}$$

Eq. S3. The	calculation	of TOF-comple	ex 1 (Acetic ac	id).
-------------	-------------	---------------	-----------------	------

 $TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.1337 \text{ C}}{96480C \cdot mol^{-1} \times 2 \times 2.5 \times 10^{-6} mol \times 1800} = 1.54 \text{ x } 10^{-4} \text{ s}^{-1}$

Eq. S4. The calculation of *TOF*- complex 2 (Acetic acid).

Figure S17. Tafel plots of log k_{obs} vs. overpotential for complexes **1** (**\blacksquare**) and **2** (**\bullet**) (CH₃CN).

Bond lengths (Å)		Bond angles (°)	
Mn(1)-P(1)	2.3049(19)	P(1)-Mn(1)-S(1)	88.57(7)
Mn(1)-S(1)	2.444(2)	P(1)-Mn(1)-C(4)	86.56(16)
Mn(1)-N(1)	2.063(6)	S(1)-Mn(1)-C(4)	39.15(16)
Mn(1)-C(4)	2.627(7)	N(1)-Mn(1)-P(1)	85.85(18)
Mn(1)-C(2)	1.867(10)	N(1)-Mn(1)-S(1)	68.78(17)
Mn(1)-C(3)	1.833(7)	N(1)-Mn(1)-C(4)	29.6(2)
Mn(1)-C(10)	1.807(7)	C(2)- Mn(1)-P(1)	90.0(2)
P(1)-C(16)	1.854(6)	C(2)-Mn(1)-S(1)	170.1(2)
P(1)-C(12)	1.838(7)	C(2)-Mn(1)-N(1)	101.3(3)
P(1)-C(11)	1.850(7)	C(2)-Mn(1)-C(4)	130.9(3)
S(2)-C(4)	1.743(7)	C(3)-Mn(1)-P(1)	179.7(2)
S(2)-C(10)	1.758(7)	C(3)-Mn(1)-S(1)	91.1(2)
S(1)-C(4)	1.707(7)	C(3)-Mn(1)-N(1)	94.0(3)
N(1)-C(5)	1.396(9)	C(3)-Mn(1)-C(4)	93.2(3)
N(1)-C(4)	1.317(9)	C(3)-Mn(1)-C(2)	90.3(3)
O(1)-C(1)	1.148(8)	C(1)-Mn(1)-P(1)	90.4(2)
O(3)-C(3)	1.143(9)	C(1)-Mn(1)-S(1)	95.9(2)
O(2)-C(2)	0.980(9)	C(1)-Mn(1)-N(1)	164.3(2)
		C(1)-Mn(1)-C(4)	135.0(3)
		C(1)-Mn(1)-C(2)	93.9(3)
		C(1)-Mn(1)-C(3)	89.7(3)

 Table S1.
 Selected bond lengths (Å) and angles (°) for complex 1.

Table S2.FTIR data for complexes A, B, 1 and 2 in dichloromethane.

Complexes	Wavenumber / cm ⁻¹
$[Mn_2(CO)_6(\mu-S_2NC_7H_4)_2]$ A	2036, 2012, 1919
$[Mn_2(CO)_6(\mu-SN_2C_7H_5)_2]$ B	2032, 2015, 1963, 1920
<i>fac</i> -[Mn(CO) ₃ (κ ² -S ₂ NC ₇ H ₄)(PTA)] 1	2022, 1941, 1902
<i>fac</i> -[Mn(CO) ₃ (κ ² -SN ₂ C ₇ H ₅)(PTA)] 2	2021, 1940, 1903

Table S3.UV-Vis data for complexes 1 and 2 in acetonitrile.

Complexes	Wavelength / nm
fac -[Mn(CO) ₃ (κ^2 -S ₂ NC ₇ H ₄)(PTA)] 1	326, 222(sh), 204(sh)
<i>fac</i> -[Mn(CO) ₃ (κ ² -SN ₂ C ₇ H ₅)(PTA)] 2	308, 214(sh)