Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information for

Photophysical and Semiconducting Properties of the Isomeric Triphenylimidazole Derivatives with Benzophenone Moiety

Gintarė Grybauskaitė-Kaminskienė¹, Vygailė Dudkaitė², Gintautas Bagdžiūnas^{2,3*}

¹ Santaka Valley, Kaunas University of Technology, Barsausko str. 59, LT- 51423, Kaunas, Lithuania

² Group of Supramolecular Analysis, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Sauletekio av. 7, LT- 10257, Vilnius, Lithuania

³ Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, LT-10257, Vilnius, Lithuania

*Correspondence: <u>gintautas.bagdziunas@gmc.vu.lt</u> (ORCID ID: 0000-0002-9924-6902)

Figure S1. ¹H NMR spectrum of the compound **1**.

Figure S2. ¹³C NMR spectrum of the compound **1**.

Figure S3. IR spectrum of of the compound 1.

Figure S4. MS spectrum of compound 1.

Figure S5. ¹H NMR spectrum of the compound **2**.

Figure S6. ¹³C NMR spectrum of the compound **2**.

Figure S7. FT-IR spectrum of of the compound **2**.

Figure S8. MS spectrum of compound 2.

Compound	1	2
Crystal image on the needle		+++++++++++++++++++++++++++++++++++++++
CCDC deposition number	2061642	2061645
Empirical formula	C ₃₄ H ₂₄ N ₂ O	$C_{34}H_{24}N_2O$
Crystal dimensions (mm)	0.190 x 0.170 x 0.050	0.480 x 0.300 x 0.110
Crystal System	monoclinic	triclinic
Space group	P2 ₁ /n (#14)	P-1 (#2)
Z value	4	
Unit cell lengths (Å)	a = 9.37(2)	a = 10.211(12)
	b = 21.01(4)	b = 10.579(12)
	c = 13.22(3)	c = 12.370(13)
Unit cell angles (deg)	$\beta = 102.98(3)$	$\alpha = 99.13(2)$
		$\beta = 99.02(2)$
		$\gamma = 92.7263(10)$
Cell volume (Å ³)	2536(10)	1299(3)
Density (g/cm ³)	1.248	1.218
R-factor ^a	0.0877	0.0589
wR2 ^b	0.2388	0.1772
Temperature (K)	293	293

Table S1. Crystallographic and refinement data of 1 and 2.

a- $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|$

b- wR2 = $[S (w (Fo^2 - Fc^2)^2) / S w (Fo^2)^2]^{1/2}$

Figure S9. Thermal properties of 1 and 2: a) DCS of 1; b) DCS of 2; c) TGA of 1 and 2.

Figure S10. UV-vis spectra with extinction coefficients of 1 and 2 in THF. Concentration of the samples was 2.1×10^{-5} M.

Figure S11. Solvatochromic effect on fluorescence spectra (a) for 1 and (b) for 2 in various organic solvents (c $\sim 10^{-6}$ M, excitation was 310 nm).

Figure S12. ToF pulses at the external electric fields of the transition of holes (a and b) and electrons (c and d) for the layers of 1 and 2, respectively

Table S2. Calculated molecular volumes, isotropic polizabilities and static dielectric constants of the corresponding materials

Compound	V, Å-3	R _{A, D} , Å	A, Å-3	ε _{st}
1	513.5	6.0	82.24	2.89
2	513.5	6.0	82.25	2.89

Table S3. Distances (d_{D-D}/d_{A-A}) between the neighbouring donor and acceptor moieties, intermolecular interaction $(-E_i)$, total reorganization energies (λ_h/λ_h) , coupling integrals $(|H_h|/|H_e|)$, Gibbs free energies $(\Delta G_h/\Delta G_h)$ and hoping probabilities (P_h/P_e) at F=0.

Compound 1: $\lambda_h = 381 \text{ meV}$; $\lambda_e = 394 \text{ meV}$							
Pathway	d_{D-D}/d_{A-A} , Å	$-E_i$, kJ mol ⁻¹	$ H_h / H_e , \text{meV}$	$\Delta G_h / \Delta G_h$, meV	P_h/P_e		
1D1	6.18/13.2	122.1	19.7/0.10	296/404	$5.9 \times 10^{-3} / 5.9 \times 10^{-6}$		
1D2	4.40/15.6	110.6	54.6/3.5	215/418	0.35/2.3×10 ⁻³		
1D3	12.48/9.75	40.6	0.1/7.5	398/370	$1.9 \times 10^{-23}/6.4 \times 10^{-16}$		
1D4	9.86/11.5	19.8	57.7/22.9	372/390	$3.9 \times 10^{-21}/6.8 \times 10^{-19}$		
Compound 2: $\lambda_h = 372 \text{ meV}$; $\lambda_e = 446 \text{ meV}$							
2D1	4.77/10.64	102.6	56.5/4.0	258/402	0.92/5.3×10 ⁻⁵		
2D2	4.68/14.7	94.6	9.9/0.85	253/434	$1.3 \times 10^{-3}/2.9 \times 10^{-8}$		
2D3	10.1/11.5	37.3	1.3/2.2	373/16	$2.6 \times 10^{-12}/3.4 \times 10^{-12}$		
2D4	12.3/14.3	6.5	71.7/0.05	417/432	$5.9 \times 10^{-20} / 4.0 \times 10^{-26}$		