Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

## Electronic Supplementary Material New Journal of Chemistry

## A Thorough Investigation of Photo-catalytic Degradation of ortho and para-Nitro Phenols in binary mixtures: New Insights into Evaluating Degradations Progress Using Chemometrics Approaches

S. Maryam Sajjadi<sup>\*a</sup>, Zeinab Asadollah-pour<sup>a</sup>, S. Hashem Sajjadi<sup>b</sup>, S. Nasrin Nabavi<sup>a</sup>, Zahra Abed<sup>a</sup>, Faezeh Farzin<sup>a</sup>, Atefeh Emadi<sup>a</sup>, Behnaz Abdous<sup>a</sup>

<sup>a</sup>Faculty of Chemistry, Semnan University, Semnan, Iran.

<sup>b</sup> École Polytechnique Federale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland

<sup>\*</sup>Correspondence to: S. Maryam Sajjadi: E-mail: sajjadi@semnan.ac.ir

Tel. (+98) 23 – 31532822 , Fax: (+98) 23 33384110.

| Independent variables                        |       |       | Levels |       |           |
|----------------------------------------------|-------|-------|--------|-------|-----------|
|                                              | -α    | -1    | 0      | 1     | $+\alpha$ |
| A (Catalyst dosage(g))                       | 0.002 | 0.003 | 0.003  | 0.004 | 0.005     |
| B (H <sub>2</sub> O <sub>2</sub> volume(mL)) | 0.1   | 0.2   | 0.2    | 0.3   | 0.4       |
| C (2-NP concentration)                       | 3     | 19    | 25     | 30    | 38        |
| D (4-NP concentration)                       | 2     | 8     | 10     | 13    | 19        |
| E (Temperature(°C))                          | 15.0  | 22.9  | 32.5   | 42.1  | 50.0      |

**Table 1S.** Experimental conditions for  $2^{5-1}$  central composite design and experimental responses for the analytes in acidic condition

|     |       | Fac | tor |    | Standard deviation of Profiles |         |         |         |         |  |
|-----|-------|-----|-----|----|--------------------------------|---------|---------|---------|---------|--|
| Run | Α     | В   | С   | D  | Е                              | YA-2-NP | YB-2-NP | YA-2-NP | YB-4-NP |  |
| 1   | 0.003 | 0.2 | 25  | 2  | 32.5                           | 9.514   | 1.698   | 0.8873  | 0       |  |
| 2   | 0.004 | 0.3 | 15  | 5  | 42.1                           | 6.456   | 1.148   | 2.114   | 0.3177  |  |
| 3   | 0.003 | 0.2 | 22  | 13 | 32.5                           | 5.911   | 1.518   | 5.194   | 2.65    |  |
| 4   | 0.003 | 0.4 | 19  | 8  | 32.5                           | 6.302   | 2.114   | 3.483   | 0.3537  |  |
| 5   | 0.003 | 0.2 | 38  | 8  | 32.5                           | 10.56   | 2.975   | 2.932   | 2.306   |  |
| 6   | 0.002 | 0.3 | 30  | 5  | 42.11                          | 11.42   | 2.303   | 2.281   | 1.237   |  |
| 7   | 0.002 | 0.1 | 34  | 10 | 23.5                           | 7.84    | 1.966   | 1.901   | 0.7429  |  |
| 8   | 0.002 | 0.1 | 30  | 10 | 42.11                          | 11.33   | 1.698   | 3.707   | 2.513   |  |
| 9   | 0.003 | 0.2 | 25  | 5  | 15                             | 11.29   | 0.3383  | 2.304   | 1.351   |  |
| 10  | 0.003 | 0.2 | 22  | 8  | 32.5                           | 8.242   | 1.616   | 3.957   | 2.3     |  |
| 11  | 0.002 | 0.3 | 25  | 10 | 42.11                          | 8.641   | 2.242   | 4.579   | 2.363   |  |
| 12  | 0.004 | 0.3 | 30  | 5  | 22.89                          | 10.75   | 2.778   | 2.243   | 1.215   |  |
| 13  | 0.004 | 0.3 | 15  | 10 | 22.89                          | 4.932   | 1.211   | 4.064   | 0.9863  |  |
| 14  | 0.003 | 0.2 | 22  | 8  | 50                             | 8.417   | 1.092   | 3.754   | 2.382   |  |
| 15  | 0.005 | 0.2 | 30  | 8  | 32.5                           | 11.54   | 1.211   | 3.835   | 2.219   |  |
| 16  | 0.003 | 0.2 | 22  | 8  | 32.5                           | 7.433   | 1.411   | 3.438   | 1.515   |  |
| 17  | 0.004 | 0.1 | 25  | 5  | 42.11                          | 11.29   | 0.3379  | 2.306   | 1.356   |  |
| 18  | 0.002 | 0.3 | 22  | 10 | 22.89                          | 4.901   | 2.728   | 3.484   | 1.5     |  |
| 19  | 0.003 | 0.2 | 3   | 8  | 32.5                           | 0.7608  | 0.3483  | 3.461   | 0.6933  |  |
| 20  | 0.004 | 0.1 | 25  | 10 | 42.11                          | 7.754   | 1.79    | 3.711   | 2.868   |  |
| 21  | 0.002 | 0.1 | 15  | 5  | 32.1                           | 5.369   | 0.9624  | 2.226   | 0.7142  |  |
| 22  | 0.003 | 0.2 | 15  | 0  | 32.5                           | 4.765   | 1.593   | 0       | 0       |  |
| 23  | 0.003 | 0.2 | 0   | 19 | 32.5                           | 0       | 0       | 6.71    | 2.223   |  |

| Data | S <sub>a-2NP</sub> | Sa-4NP | Sb-2NP | Sb-4NP |
|------|--------------------|--------|--------|--------|
| SV*  |                    |        |        |        |
| 1    | 14.09              | 17.76  | 14.54  | 45.79  |
| 2    | 3.15               | 6.86   | 2.30   | 11.66  |
| 3    | 0.47               | 0.47   | 0.42   | 0.94   |
| 4    | 0.13               | 0.26   | 0.15   | 0.30   |
| 5    | 0.09               | 0.12   | 0.02   | 0.19   |

**Table 2S.** The results of SVD analysis on the data of individual nitrophenols

\*SV is the abbreviation of singular value.

| Table 3S. Analysis of | variance (ANOVA) | for central | composite | design for | 2-NP-A a | at acidic |
|-----------------------|------------------|-------------|-----------|------------|----------|-----------|
| condition             |                  |             |           |            |          |           |

|             | Sum of  |    |             |         | p-value  |
|-------------|---------|----|-------------|---------|----------|
| Source      | Squares | df | Mean Square | F Value | Prob > F |
| Model       | 224     | 10 | 22.4        | 27.66   | < 0.0001 |
| С           | 6.964   | 1  | 6.964       | 8.598   | 0.01255  |
| D           | 18.89   | 1  | 18.89       | 23.32   | 0.000412 |
| E           | 8.945   | 1  | 8.945       | 11.05   | 0.006071 |
| AE          | 1.381   | 1  | 1.381       | 1.705   | 0.2161   |
| BC          | 3.757   | 1  | 3.757       | 4.639   | 0.05228  |
| CD          | 18.48   | 1  | 18.48       | 22.82   | 0.000451 |
| DE          | 5.211   | 1  | 5.211       | 6.434   | 0.02611  |
| $A^2$       | 3.099   | 1  | 3.099       | 3.827   | 0.07413  |
| $C^2$       | 5.341   | 1  | 5.341       | 6.595   | 0.02463  |
| $D^2$       | 5.223   | 1  | 5.223       | 6.449   | 0.02597  |
| Residual    | 9.719   | 12 | 0.8099      |         |          |
| Lack of Fit | 9.391   | 11 | 0.8537      | 2.606   | 0.4518   |
| Pure Error  | 0.3276  | 1  | 0.3276      |         |          |
| Cor Total   | 233.7   | 22 |             |         |          |

|                | Sum of  |    |             |         | p-value  |
|----------------|---------|----|-------------|---------|----------|
| Source         | Squares | df | Mean Square | F Value | Prob > F |
| Model          | 13.9    | 13 | 1.069       | 23.68   | < 0.0001 |
| В              | 3.078   | 1  | 3.078       | 68.15   | < 0.0001 |
| С              | 5.216   | 1  | 5.216       | 115.5   | < 0.0001 |
| E              | 0.8243  | 1  | 0.8243      | 18.25   | 0.002075 |
| AB             | 0.2519  | 1  | 0.2519      | 5.577   | 0.04249  |
| AC             | 1.123   | 1  | 1.123       | 24.85   | 0.000754 |
| AD             | 2.387   | 1  | 2.387       | 52.84   | < 0.0001 |
| BD             | 0.2012  | 1  | 0.2012      | 4.454   | 0.06403  |
| BE             | 2.827   | 1  | 2.827       | 62.58   | < 0.0001 |
| CE             | 2.279   | 1  | 2.279       | 50.45   | < 0.0001 |
| DE             | 0.424   | 1  | 0.424       | 9.388   | 0.01348  |
| $A^2$          | 0.7599  | 1  | 0.7599      | 16.82   | 0.00267  |
| $\mathbf{B}^2$ | 0.745   | 1  | 0.745       | 16.49   | 0.002836 |
| $E^2$          | 2.891   | 1  | 2.891       | 64      | < 0.0001 |
| Residual       | 0.4065  | 9  | 0.04517     |         |          |
| Lack of Fit    | 0.3855  | 8  | 0.04819     | 2.293   | 0.4725   |
| Pure Error     | 0.02102 | 1  | 0.02102     |         |          |
| Cor Total      | 14.31   | 22 |             |         |          |

**Table 4S.** Analysis of variance (ANOVA) for central composite design for 2-NP-B at acidic condition

**Table 5S.** Analysis of variance (ANOVA) for central composite design for 4-NP-A at acidic condition

|                | Sum of  |    |             |         | p-value  |
|----------------|---------|----|-------------|---------|----------|
| Source         | Squares | df | Mean Square | F Value | Prob > F |
| Model          | 43.56   | 11 | 3.96        | 167.3   | < 0.0001 |
| D              | 20.45   | 1  | 20.45       | 864     | < 0.0001 |
| AB             | 0.2753  | 1  | 0.2753      | 11.63   | 0.005825 |
| AC             | 1.156   | 1  | 1.156       | 48.84   | < 0.0001 |
| AD             | 1.101   | 1  | 1.101       | 46.5    | < 0.0001 |
| BC             | 0.4451  | 1  | 0.4451      | 18.8    | 0.001182 |
| BE             | 1.034   | 1  | 1.034       | 43.67   | < 0.0001 |
| CE             | 2.118   | 1  | 2.118       | 89.48   | < 0.0001 |
| $A^2$          | 0.7488  | 1  | 0.7488      | 31.63   | 0.000155 |
| $C^2$          | 0.2432  | 1  | 0.2432      | 10.27   | 0.008378 |
| $D^2$          | 0.6543  | 1  | 0.6543      | 27.64   | 0.000269 |
| $\mathrm{E}^2$ | 0.2625  | 1  | 0.2625      | 11.09   | 0.006708 |
| Residual       | 0.2604  | 11 | 0.02367     |         |          |
| Lack of Fit    | 0.126   | 10 | 0.0126      | 0.09378 | 0.9915   |
| Pure Error     | 0.1344  | 1  | 0.1344      |         |          |
| Cor Total      | 43.82   | 22 |             |         |          |

|                | Sum of  |    |             |         | p-value  |
|----------------|---------|----|-------------|---------|----------|
| Source         | Squares | df | Mean Square | F Value | Prob > F |
| Model          | 16.56   | 10 | 1.656       | 19.93   | < 0.0001 |
| В              | 0.8916  | 1  | 0.8916      | 10.73   | 0.006635 |
| С              | 2.425   | 1  | 2.425       | 29.18   | 0.00016  |
| D              | 7.33    | 1  | 7.33        | 88.21   | < 0.0001 |
| Е              | 1.18    | 1  | 1.18        | 14.2    | 0.002679 |
| AB             | 0.2937  | 1  | 0.2937      | 3.535   | 0.08458  |
| BC             | 0.3473  | 1  | 0.3473      | 4.179   | 0.06351  |
| BE             | 0.3936  | 1  | 0.3936      | 4.736   | 0.05023  |
| CD             | 0.4583  | 1  | 0.4583      | 5.515   | 0.03681  |
| DE             | 0.8533  | 1  | 0.8533      | 10.27   | 0.007569 |
| $\mathbf{B}^2$ | 0.7431  | 1  | 0.7431      | 8.942   | 0.01127  |
| Residual       | 0.9972  | 12 | 0.0831      |         |          |
| Lack of Fit    | 0.6892  | 11 | 0.06265     | 0.2034  | 0.9514   |
| Pure Error     | 0.308   | 1  | 0.308       |         |          |
| Cor Total      | 17.56   | 22 |             |         |          |

**Table 6S.** Analysis of variance (ANOVA) for central composite design for 4-NP-B at acidic condition

**Table 7S.** Analysis of variance (ANOVA) for central composite design for 2-NP-A at basic condition

|             | Sum of  |    |             |         | p-value  |
|-------------|---------|----|-------------|---------|----------|
| Source      | Squares | df | Mean Square | F Value | Prob > F |
| Model       | 452.6   | 6  | 75.43       | 52.69   | < 0.0001 |
| В           | 11.54   | 1  | 11.54       | 8.063   | 0.01393  |
| С           | 328.1   | 1  | 328.1       | 229.2   | < 0.0001 |
| D           | 1.941   | 1  | 1.941       | 1.356   | 0.2652   |
| E           | 10.57   | 1  | 10.57       | 7.386   | 0.01759  |
| CE          | 5.742   | 1  | 5.742       | 4.011   | 0.06652  |
| $E^2$       | 1.758   | 1  | 1.758       | 1.228   | 0.2878   |
| Residual    | 18.61   | 13 | 1.432       |         |          |
| Lack of Fit | 12.82   | 12 | 1.068       | 0.1846  | 0.9618   |
| Pure Error  | 5.789   | 1  | 5.789       |         |          |
| Cor Total   | 471.2   | 19 |             |         |          |
|             |         |    |             |         |          |

|             | Sum of  |    |             |         | p-value  |
|-------------|---------|----|-------------|---------|----------|
| Source      | Squares | df | Mean Square | F Value | Prob > F |
| Model       | 141     | 12 | 11.75       | 15.83   | 0.000629 |
| А           | 5.238   | 1  | 5.238       | 7.06    | 0.0326   |
| В           | 23.34   | 1  | 23.34       | 31.46   | 0.000808 |
| С           | 32.55   | 1  | 32.55       | 43.87   | 0.000298 |
| D           | 12.65   | 1  | 12.65       | 17.04   | 0.004412 |
| E           | 23.55   | 1  | 23.55       | 31.74   | 0.000788 |
| AB          | 7.688   | 1  | 7.688       | 10.36   | 0.01467  |
| AC          | 3.958   | 1  | 3.958       | 5.334   | 0.05422  |
| AD          | 4.155   | 1  | 4.155       | 5.6     | 0.04987  |
| AE          | 25.69   | 1  | 25.69       | 34.62   | 0.000609 |
| BC          | 1.585   | 1  | 1.585       | 2.136   | 0.1872   |
| BD          | 14.25   | 1  | 14.25       | 19.21   | 0.003224 |
| DE          | 20.06   | 1  | 20.06       | 27.04   | 0.001253 |
| Residual    | 5.194   | 7  | 0.7419      |         |          |
| Lack of Fit | 3.418   | 6  | 0.5697      | 0.3209  | 0.872    |
| Pure Error  | 1.775   | 1  | 1.775       |         |          |
| Cor Total   | 146.1   | 19 |             |         |          |

**Table 8S.** Analysis of variance (ANOVA) for central composite design for 2-NP-B at basic condition

| Table 9S. | Analysis | of variance | (ANOVA) | for central | composite | design fo | r 2-NP-C | at basic |
|-----------|----------|-------------|---------|-------------|-----------|-----------|----------|----------|
| condition |          |             |         |             |           |           |          |          |

|             | Sum of  |    |             |         | p-value  |
|-------------|---------|----|-------------|---------|----------|
| Source      | Squares | df | Mean Square | F Value | Prob > F |
| Model       | 557.9   | 8  | 69.74       | 30.66   | < 0.0001 |
| С           | 203.6   | 1  | 203.6       | 89.52   | < 0.0001 |
| E           | 7.271   | 1  | 7.271       | 3.197   | 0.1013   |
| AB          | 45.14   | 1  | 45.14       | 19.85   | 0.000971 |
| AC          | 4.661   | 1  | 4.661       | 2.049   | 0.1801   |
| AE          | 113.9   | 1  | 113.9       | 50.06   | < 0.0001 |
| BE          | 76.38   | 1  | 76.38       | 33.58   | 0.00012  |
| CE          | 16.59   | 1  | 16.59       | 7.294   | 0.02063  |
| DE          | 15.25   | 1  | 15.25       | 6.703   | 0.02518  |
| Residual    | 25.02   | 11 | 2.275       |         |          |
| Lack of Fit | 12.97   | 10 | 1.297       | 0.1076  | 0.9877   |
| Pure Error  | 12.05   | 1  | 12.05       |         |          |
| Cor Total   | 582.9   | 19 |             |         |          |

**Table 10S.** Analysis of variance (ANOVA) for central composite design for 4-NP-A at basic condition

|             | Sum of   |    |             |         | p-value  |
|-------------|----------|----|-------------|---------|----------|
| Source      | Squares  | df | Mean Square | F Value | Prob > F |
| Model       | 26.69    | 3  | 8.897       | 109.5   | < 0.0001 |
| D           | 8.517    | 1  | 8.517       | 104.8   | < 0.0001 |
| DE          | 0.3572   | 1  | 0.3572      | 4.397   | 0.05226  |
| $D^2$       | 1.474    | 1  | 1.474       | 18.14   | 0.000599 |
| Residual    | 1.3      | 16 | 0.08123     |         |          |
| Lack of Fit | 1.297    | 15 | 0.08649     | 36.18   | 0.1298   |
| Pure Error  | 0.002391 | 1  | 0.002391    |         |          |
| Cor Total   | 27.99    | 19 |             |         |          |

|                | Sum of  |    |             |         | p-value  |
|----------------|---------|----|-------------|---------|----------|
| Source         | Squares | df | Mean Square | F Value | Prob > F |
| Model          | 11.85   | 9  | 1.316       | 24.99   | < 0.0001 |
| С              | 0.9622  | 1  | 0.9622      | 18.27   | 0.001626 |
| D              | 6.993   | 1  | 6.993       | 132.8   | < 0.0001 |
| E              | 0.1444  | 1  | 0.1444      | 2.742   | 0.1287   |
| AB             | 0.8151  | 1  | 0.8151      | 15.48   | 0.002803 |
| AC             | 1.055   | 1  | 1.055       | 20.02   | 0.001189 |
| BC             | 1.326   | 1  | 1.326       | 25.18   | 0.000524 |
| BE             | 0.312   | 1  | 0.312       | 5.924   | 0.03521  |
| $C^2$          | 1.198   | 1  | 1.198       | 22.74   | 0.000759 |
| $\mathrm{E}^2$ | 0.1231  | 1  | 0.1231      | 2.336   | 0.1574   |
| Residual       | 0.5267  | 10 | 0.05267     |         |          |
| Lack of Fit    | 0.4426  | 9  | 0.04918     | 0.5845  | 0.7767   |
| Pure Error     | 0.08414 | 1  | 0.08414     |         |          |
| Cor Total      | 12.37   | 19 |             |         |          |

**Table 11S.** Analysis of variance (ANOVA) for central composite design for 4-NP-B at basic condition

## **Equations:**

Acidic status: The relationship between the responses and experimental factors in acidic condition is as follows:

 $YA_{2-NP} = 6.114 + 1.310 \text{ C} - 2.408 \text{ D} + 1.351 \text{ E} - 0.4840 \text{ AE} -0.8032 \text{ BC} -1.709 \text{ CD} + 1.286$  $DE + 0.5571 \text{ A}^2 -0.5100 \text{ C}^2 -0.6589 \text{ D}^2$ Eq. 1S

 $YB_{2-NP} = 1.946 + 0.6367 \text{ B} + 0.6211 \text{ C} + 0.6183 \text{ E} - 0.1837 \text{ AB} - 0.8600 \text{ AC} + 1.143 \text{ AD} + 0.1846 \text{ BD} - 0.9865 \text{ BE} - 1.736 \text{ CE} + 0.4973 \text{ DE} + 0.4707 \text{ A}^2 - 0.2004 \text{ B}^2 - 0.5499 \text{ E}^2 \qquad \text{Eq. 2S}$ 

$$YA_{4-NP} = 4.504 + 1.615 D + 0.1785 AB + 0.6915 AC - 0.6415 AD + 0.2288 BC + 0.4611$$
  
BE+ 1.163 CE - 0.3635 A<sup>2</sup> - 0.1078 C<sup>2</sup> - 0.1748 D<sup>2</sup> + 0.1329 E<sup>2</sup> Eq. 3S

 $YB_{4-NP} = 2.060 - 0.2480 \text{ B} + 0.6013 \text{ C} + 0.9481 \text{ D} + 0.5258 \text{ E} - 0.1537 \text{ AB} + 0.2577 \text{ BC} - 0.1902 \text{ BE} + 0.1866 \text{ CD} + 0.5135 \text{ DE} - 0.1820 \text{ B}^2$ Eq. 4S





Fig. S1. pH titration data of 2-NP



Fig. S2. pH titration data of 4-NP



Fig. S3. The spectral and pH profiles of 2-NP



Fig. S4. The spectral and pH profiles of 4-NP



Fig. S5. Resolved profiles for 2-NP in basic media



Fig. S6. Resolved profiles for 4-NP in acidic media



Fig. S7. Resolved profiles for 4-NP in basic media



**Fig. S8.** The acquired profiles in (a) time and (b) wavelength mode by MA-MCR-ALS method for the mixtures of nitophenols at acidic condition



Fig. S9. Response surface for some components of 4-NP in basic condition



Fig. S10. Response surface for some components of 2-NP and 4-NP in basic condition



Fig. S11. Response surface for some components of 2-NP and 4-NP in acidic