Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting materials

Gel self-assembly of lanthanum aminopolycarboxylates with skeleton

structures and adsorptions of gases

Si-Yuan Wang,¹ Zhen-Lang Xie,² Xin Dong,² Zhao-Hui Zhou^{2,*}

a. ¹School of Pharmacy, Heilongjiang University of Chinese Medicine, Haerbin, 150040, China;

²State Key Laboratory for Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Figure and Table Options

Figure S1. 2D layered structure of $[La(Hida)_2(H_2O)_2]_n$ nCl $4nH_2O$ (1) viewed along *a* and *b* axis.

Figure S2. Schematic descriptions of the equivalent topology frameworks in $[La(Hida)_2(H_2O)_2]_n$ nCl 4nH₂O (1) viewed along *c* axis.

Figure S3. 2D layered structure of $K_{2n}[La(nta)_2]_n nH_2O$ (2) viewed along *a* and *b* axis.

Figure S4. Schematic descriptions of the equivalent topology frameworks in $K_{2n}[La(nta)_2]_n nH_2O(2)$.

Figure S5. Diagram of the $[La_2(edta)_2(H_2O)_2]^{2-}$ dimeric unit in $(H_2en)_n[La(edta)(H_2O)]_{2n}$ $\pm 10nH_2O$ (3).

Figure S6. 2D layered structure of $(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (3).

Figure S7. Schematic descriptions of the equivalent topology frameworks in $(H_2en)_n[La(edta)(H_2O)]_{2n}$ $(10nH_2O)$ (3) viewed along *c* axis.

Figure S8. TG–DTG curves of [La(Hida)₂(H₂O)₂]_n nCl 4nH₂O (1).

Figure S9. TG–DTG curves of $K_{2n}[La(nta)_2]_n nH_2O(2)$.

Figure S10. TG–DTG curves of $(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (3).

Figure S11. IR spectra of $[La(Hida)_2(H_2O)_2]_n$ nCl $4nH_2O$ (1), $K_{2n}[La(nta)_2]_n$ nH₂O (2) and $(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (3).

FigureS12. O_2 , CO_2 , CH_4 , N_2 and H_2 adsorptionisothermsof $(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (3,a)and $\{La(H_2O)_4[La(1,3-pdta)(H_2O)]_3\}_n \cdot 11.25nH_2O$ (4, b) at 298 K.

Table S1. Bond valence calculations for $[La(Hida)_2(H_2O)_2]_n nCl 4nH_2O$ (1), $K_{2n}[La(nta)_2]_n nH_2O$ (2) and $(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (3).

Table S2. Adsorption data of O_2 , CO_2 , CH_4 , N_2 , H_2 and desorption data of O_2 (mg/g) of $(H_2en)_n[La(edta)(H_2O)]_{2n}$ $\pm 10nH_2O$ (**3**) at 298 K under different pressure respectively.

Table S3. Adsorption data of O₂, CO₂, CH₄, N₂, H₂ and desorption data of O₂, CO₂ (mg/g) of $\{La(H_2O)_4[La(1,3-pdta)(H_2O)]_3\}_n$ 11.25nH₂O (4) at 298 K under different pressure respectively.

Table S4. Solid state ¹³C NMR data for $[La(Hida)_2(H_2O)_2]_n$ nCl 4nH₂O (1), $K_{2n}[La(nta)_2]_n$ nH₂O (2) and $(H_2en)_n[La(edta)(H_2O)]_{2n}$ 10nH₂O (3).

Table S5. Crystallographic data and structural refinements for $[La(Hida)_2(H_2O)_2]_n$ nCl $4nH_2O$ (1), $K_{2n}[La(nta)_2]_n$ nH $_2O$ (2) and $(H_2en)_n[La(edta)(H_2O)]_{2n}$ $\cdot 10nH_2O$ (3).

Table S6. Selected bond distances (Å) and angles () for $[La(Hida)_2(H_2O)_2]_n$ nCl 4nH₂O (1).

Table S7. Selected bond distances (Å) and angles ($^{\circ}$) for K_{2n}[La(nta)₂]_n nH₂O (**2**).

Table S8. Selected bond distances (Å) and angles ($^{\circ}$) for $(H_2en)_n[La(edta)(H_2O)]_{2n}$ $\cdot 10nH_2O$ (3).

Table S9. Selected bond distances (Å) and angles (°) within the water layer in $[La(Hida)_2(H_2O)_2]_n$ nCl 4nH₂O (1).

Table S10. Selected bond distances (Å) and angles (°) within the water layer in $(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (3).

Table S11. Comparisons of selected bond distances (Å) for 1 - 33.

Figure S1. 2D layered structure of $[La(Hida)_2(H_2O)_2]_n$ nCl 4nH₂O (1) viewed along *a* and *b* axis.

Figure S2. Schematic descriptions of the equivalent topology frameworks in $[La(Hida)_2(H_2O)_2]_n$ nCl 4nH₂O (1) viewed along *c* axis.

Figure S3. 2D layered structure of $K_{2n}[La(nta)_2]_n nH_2O$ (2) viewed along *a* and *b* axis.

Figure S4. Schematic descriptions of the equivalent topology frameworks in $K_{2n}[La(nta)_2]_n nH_2O(2)$.

Figure S5. Diagram of the $[La_2(edta)_2(H_2O)_2]^{2-}$ dimeric unit in $(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (3).

Figure S6. 2D layered structure of $(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (3).

Figure S7. Schematic descriptions of the equivalent topology frameworks in $(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (3) viewed along *c* axis.

Figure S8. TG–DTG curves of $[La(Hida)_2(H_2O)_2]_n$ nCl $4nH_2O$ (1).

Figure S9. TG–DTG curves of $K_{2n}[La(nta)_2]_n nH_2O(2)$.

Figure S10. TG–DTG curves of $(H_2en)_n[La(edta)(H_2O)]_{2n}$ $10nH_2O$ (3).

 $\label{eq:Figure S11. IR spectra of $[La(Hida)_2(H_2O)_2]_n$ nCl $4nH_2O(1), $K_{2n}[La(nta)_2]_n$ nH_2O(2)$ and $(H_2en)_n[La(edta)(H_2O)]_{2n}$ $\cdot 10nH_2O(3)$.}$

Complexes	Atom	Ν	$\sum S_{ij}$	Δ
$[La(Hida)_2(H_2O)_2]_n nCl 4nH_2O(1)$	La(1)	3+	3.142	0.142
$K_{2n}[La(nta)_2]_n nH_2O(2)$	La(1)	3+	3.148	0.148
	La(1)	3+	3.281	0.281
$(H_2en)_n[La(edta)(H_2O)]_{2n} \ 10nH_2O \ (\textbf{3})$	La(2)	3+	3.235	0.235

Table S1. Bond valence calculations for $[La(Hida)_2(H_2O)_2]_n nCl 4nH_2O$ (1), $K_{2n}[La(nta)_2]_n nH_2O$ (2) and $(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (3).

respectively.							
Press	0	CO	CU	N	TT	Press	0
(bar)	O_2	CO_2	CH_4	IN ₂	п2	(bar)	O_2
0.00	0.00	0.00	0.00	0.00	0.00	29.90	5.49
1.89	0.49	0.34	0.05	0.06	0.06	27.90	5.15
3.89	0.87	0.40	0.05	0.00	0.06	25.89	4.80
5.90	1.25	0.48	0.03	-0.07	0.06	23.90	4.45
7.90	1.62	0.46	0.04	-0.11	0.07	21.90	4.14
9.90	1.97	0.51	0.04	-0.16	0.05	19.89	3.77
11.90	2.28	0.51	-0.01	-0.25	0.05	17.90	3.35
13.89	2.65	0.57	0.00	-0.27	0.05	15.89	2.98
15.89	3.02	0.52	-0.01	-0.31	0.06	13.89	2.61
17.90	3.39	0.47	0.03	-0.35	0.07	11.90	2.22
19.90	3.80	0.43	0.01	-0.38	0.06	9.89	1.91
21.90	4.16	0.41	-0.04	-0.42	0.07	7.90	1.56
23.90	4.47	0.38	-0.05	-0.51	0.05	5.90	1.18
25.90	4.81	0.31	-0.10	-0.63	0.07	3.89	0.80
27.90	5.16	0.20	-0.13	-0.68	0.06	1.90	0.41
29.90	5.49	0.09	-0.13	-0.72	0.05	0.00	0.00

Table S2. Adsorption data of O_2 , CO_2 , CH_4 , N_2 , H_2 and desorption data of O_2 (mg/g) of $(H_2en)_n[La(edta)(H_2O)]_{2n}$ $\cdot 10nH_2O$ (**3**) at 298 K under different pressure respectively.

1	1							
Press (bar)	O ₂	CO_2	CH ₄	N_2	H_2	Press (bar)	O ₂	CO_2
0.00	0.00	0.00	0.00	0.00	0.00	29.89	18.01	55.33
1.89	1.04	7.65	0.02	0.27	0.01	27.89	17.20	53.67
3.89	2.45	15.36	0.02	0.43	0.02	25.89	16.27	52.02
5.90	3.91	22.40	0.03	0.75	0.03	23.89	15.25	50.34
7.90	5.40	28.78	0.05	1.04	0.06	21.89	14.20	48.46
9.90	6.82	34.35	0.04	1.31	0.08	19.89	13.14	46.77
11.90	8.23	38.96	0.05	1.66	0.06	17.89	11.98	45.26
13.89	9.56	42.74	0.04	2.01	0.07	15.89	10.78	43.39
15.89	10.81	45.74	0.07	2.30	0.06	13.89	9.52	41.02
17.90	12.00	48.22	0.09	2.60	0.09	11.89	8.18	38.06
19.90	13.16	50.15	0.09	2.91	0.08	9.89	6.77	34.09
21.90	14.23	51.69	0.06	3.21	0.09	7.89	5.34	28.49
23.90	15.26	52.88	0.03	3.49	0.10	5.89	3.84	22.13
25.90	16.28	53.68	0.05	3.78	0.12	3.89	2.38	15.02
27.90	17.20	54.65	0.06	4.09	0.11	1.89	0.97	6.78
29.90	18.01	55.33	0.08	4.41	0.13	0.00	0.00	0.00

Table S3. Adsorption data of O₂, CO₂, CH₄, N₂, H₂ and desorption data of O₂, CO₂ (mg/g) of $\{La(H_2O)_4[La(1,3-pdta)(H_2O)]_3\}_n$ ·11.25nH₂O (4) at 298 K under different pressure respectively.

Complexes	-CH ₂ N/-CH ₂ CO ₂	CO ₂
[La(Hida) ₂ (H ₂ O) ₂] _n nCl 4nH ₂ O (1)	46.0/49.6	170.7/174.2/175.4/177.3
$K_{2n}[La(nta)_2]_n nH_2O(2)$	64.4/68.1	178.4/180.5/183.7
$(H_2en)_n[La(edta)(H_2O)]_{2n} \ 10nH_2O$ (3)	59.2/64.2/66.6/67.9	178.7/180.6/183.9

Table S4. Solid state ¹³C NMR data for $[La(Hida)_2(H_2O)_2]_n nCl 4nH_2O$ (1), $K_{2n}[La(nta)_2]_n nH_2O$ (2) and $(H_2en)_n[La(edta)(H_2O)]_{2n} 10nH_2O$ (3).

$(H_2en)_n[L_2(edta)(H_2O)]_2_n$	$10nH_2O$ (1),	$\mathbf{K}_{2n}[\mathbf{La}(\mathbf{III}a)_{2}]_{n}$ $\mathbf{III}_{2}\mathbf{C}$	(2) and
Identification code	1	2	3
Empirical formula	C ₈ H ₂₄ ClLaN ₂ O ₁₄	$C_{12}H_{14}K_{2}LaN_{2}O_{13}$	C ₂₂ H ₅₈ La ₂ N ₆ O ₂₈
Formula weight	546.65	611.37	1132.56
Temperature/K	173	293(2)	193
Crystal system	orthorhombic	cubic	triclinic
Space group	P bca	<i>P</i> 2 ₁ 3	$P \bar{1}$
a/Å	8.8281(4)	12.3762(2)	13.0217(4)
$b/{ m \AA}$	19.2494(8)	12.3762(2)	13.1618(6)
$c/{ m \AA}$	22.482(2)	12.3762(2)	14.0976(7)
α / °	90	90	114.764(5)
eta/ °	90	90	92.033(3)
γ/°	90	90	103.503(4)
Volume/Å ³	3820.5(4)	1895.67(9)	2108.9(2)
Crystal size/mm ³	0.3 imes 0.2 imes 0.04	0.2 imes 0.2 imes 0.17	0.2 imes 0.2 imes 0.1
Radiation (Å)	MoK α (λ = 0.71073)	MoK α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
Dx,g cm ⁻³	1.901	2.142	1.784
Z	8	4	2
$Mu (mm^{-1})$	2.446	2.766	2.097
F(000)	2176.0	1196.0	1140.0
h,k,lmax	12,26,29	17,17,17	17,17,18
Nref	4800	1650	9381
Tmin,Tmax	0.854,1.000	0.991,1.000	0.778,0.811
Data completeness	0.860	1.64/0.92	0.872
Theta(max)	30.019	29.659	28.577
<i>R</i> (reflections)	0.0326(4057)	0.0380(1577)	0.0376(7566)
wR_2 (reflections)	0.0815(4800)	0.0802(1650)	0.0853(9381)
S	1.088	1.132	1.049
Npar	249	92	441

Table S5. Crystallographic data and structural refinements for $[La(Hida)_2(H_2O)_2]_n$ nCl 4nH2O(1), $K_{2n}[La(nta)_2]_n$ nH2O(2) and $(H_2en)_n[La(edta)(H_2O)]_{2n}$ 10nH2O(3).

$[La(Hida)_2(H_2O)_2]_n$	nCl $4nH_2O(1)$.		
La(1)–O(1)	2.481(2)	La(1)–C(5b)	3.043(3)
La(1)–O(2a)	2.532(2)	La(1)–C(7c)	3.055(3)
La(1)–O(5)	2.505(2)	La(1a)–O(5)	2.745(2)
La(1)–O(5b)	2.745(2)	La(1a)–O(6)	2.611(2)
La(1)–O(6b)	2.611(2)	La(1b)–O(2)	2.532(2)
La(1)–O(7c)	2.746(2)	La(1e)–O(7)	2.524(2)
La(1)–O(7d)	2.524(2)	La(1f)–O(7)	2.746(2)
La(1)–O(8c)	2.644(2)	La(1f)–O(8)	2.644(2)
La(1)–O(1W)	2.722(2)	La(1a)-C(5)	3.043(3)
La(1)–O(2W)	2.614(2)	La(1f)–C(7)	3.055(3)
O(1)–La(1)–O(2a)	136.92(8)	O(6b)-La(1)-O(1W)	70.21(7)
O(1)–La(1)–O(5)	139.34(8)	O(6b)-La(1)-O(2W)	70.79(8)
O(1)–La(1)–O(5b)	67.02(8)	O(6b)–La(1)–C(5b)	23.90(8)
O(1)–La(1)–O(6b)	84.94(8)	O(6b)–La(1)–C(7c)	142.67(8)
O(1)-La(1)-O(7c)	103.98(8)	O(7c)-La(1)-O(7d)	123.21(9)
O(1)-La(1)-O(7d)	73.86(8)	O(7c)-La(1)-O(8c)	48.30(7)
O(1)-La(1)-O(8c)	72.38(8)	O(7c)-La(1)-O(1W)	125.07(7)
O(1)-La(1)-O(1W)	130.92(8)	O(7c)-La(1)-O(2W)	63.31(7)
O(1)-La(1)-O(2W)	67.15(8)	O(7c)–La(1)–C(5b)	146.92(8)
O(1)–La(1)–C(5b)	74.58(9)	O(7c)-La(1)-C(7c)	24.64(7)
O(1)-La(1)-C(7c)	88.48(9)	O(7d)-La(1)-O(8c)	79.64(8)
O(2a)–La(1)–O(5)	78.29(8)	O(7d)-La(1)-O(1W)	77.60(7)
O(2a)–La(1)–O(5b)	122.76(7)	O(7d)-La(1)-O(2W)	140.51(8)
O(2a)–La(1)–O(6b)	134.99(8)	O(7d)–La(1)–C(5b)	88.70(8)
O(2a)–La(1)–O(7c)	69.83(7)	O(7d)-La(1)-C(7c)	100.80(8)
O(2a)–La(1)–O(7d)	75.24(7)	O(8c)-La(1)-O(1W)	139.18(8)
O(2a)-La(1)-O(8c)	73.13(8)	O(8c)-La(1)-O(2W)	82.94(8)
O(2a)–La(1)–O(1W)	68.54(8)	O(8c)–La(1)–C(5b)	146.85(8)
O(2a)–La(1)–O(2W)	132.09(7)	O(8c)-La(1)-C(7c)	23.70(8)
O(2a)–La(1)–C(5b)	133.66(8)	O(1W)-La(1)-O(2W)	134.20(7)
O(2a)–La(1)–C(7c)	68.73(9)	O(1W)–La(1)–C(5b)	65.61(8)
O(5)–La(1)–O(5b)	116.11(9)	O(1W)–La(1)–C(7c)	136.09(8)
O(5)–La(1)–O(6b)	73.39(8)	O(2W)–La(1)–C(5b)	86.91(8)
O(5)-La(1)-O(7c)	64.39(7)	O(2W)–La(1)–C(7c)	72.79(8)
O(5)–La(1)–O(7d)	146.19(8)	C(5b)-La(1)-C(7c)	157.57(9)
O(5)-La(1)-O(8c)	112.22(8)	La(1)–O(5)–La(1a)	115.21(9)
O(5)–La(1)–O(1W)	73.35(8)	La(1e)–O(7)–La(1f)	114.57(8)
O(5)–La(1)–O(2W)	73.30(8)	O(5)–C(5)–La(1a)	64.4(2)
O(5)–La(1)–C(5b)	94.69(8)	O(6)–C(5)–La(1a)	58.2(2)
O(5)–La(1)–C(7c)	88.64(8)	O(7)–C(7)–La(1f)	63.9(2)
O(5b)–La(1)–O(6b)	48.54(7)	O(8)-C(7)-La(1f)	59.2(2)

Table S6. Selected bond distances (Å) and angles (\degree) for [La(Hida)₂(H₂O)₂]_n nCl 4nH₂O (1).

O(5b)-La(1)-O(7c)	167.40(7)	C(1)–O(1)–La(1)	142.9(2)
O(5b)–La(1)–O(7d)	64.17(7)	C(1)–O(2)–La(1b)	135.3(2)
O(5b)-La(1)-O(8c)	131.19(8)	C(5)–O(5)–La(1)	153.4(2)
O(5b)–La(1)–O(1W)	64.78(7)	C(5)–O(5)–La(1a)	90.9(2)
O(5b)–La(1)–O(2W)	104.33(7)	C(5)–O(6)–La(1a)	97.9(2)
O(5b)–La(1)–C(5b)	24.65(8)	C(7)–O(7)–La(1e)	146.6(2)
O(5b)–La(1)–C(7c)	153.63(8)	C(7)–O(7)–La(1f)	91.4(2)
O(6b)-La(1)-O(7c)	124.07(7)	C(7)–O(8)–La(1f)	97.1(2)
O(6b)–La(1)–O(7d)	112.41(7)	C(6)–C(5)–La(1a)	177.1(2)
O(6b)-La(1)-O(8c)	150.52(8)	C(8)–C(7)–La(1f)	176.5(2)

Symmetry codes: (a) $-\frac{1}{2} + x$, y, $\frac{1}{2} - z$; (b) $\frac{1}{2} + x$, y, $\frac{1}{2} - z$; (c) -x, $-\frac{1}{2} + y$, $\frac{1}{2} - z$; (d) $\frac{1}{2} - x$, $-\frac{1}{2} + y$, z; (e) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (f) -x, $\frac{1}{2} + y$, $\frac{1}{2} - z$;

Table 57. Selected b	olid distances (A) and	aligies () for \mathbf{K}_{2n} [La($[11a)_2]_n [111_2 O(2).$
La(1)–O(1)	2.542(5)	La(1)–O(4b)	2.631(5)
La(1)–O(1a)	2.542(5)	La(1)–N(1)	2.68(1)
La(1)–O(1b)	2.542(5)	La(1)–C(4)	2.990(6)
La(1)–O(3)	2.674(5)	La(1)–C(4a)	2.990(6)
La(1)–O(3a)	2.674(5)	La(1c)-K(1)	3.959(3)
La(1)–O(3b)	2.674(5)	La(1d)–K(2)	4.5610(9)
La(1)–O(4)	2.631(5)	La(1e) - K(2)	4.5610(9)
La(1)–O(4a)	2.631(5)		
O(1)-La(1)-O(1a)	100.4(2)	O(4a)–La(1)–O(4b)	116.04(7)
O(1)–La(1)–O(1b)	100.4(2)	O(4a)–La(1)–N(1)	101.6(1)
O(1)-La(1)-O(3)	75.2(2)	O(4a)–La(1)–C(4)	93.7(2)
O(1)-La(1)-O(3a)	116.5(2)	O(4a)–La(1)–C(4a)	24.6(2)
O(1)–La(1)–O(3b)	143.1(2)	O(4b)-La(1)-N(1)	101.6(1)
O(1)-La(1)-O(4)	71.4(2)	O(4b)–La(1)–C(4)	123.8(2)
O(1)-La(1)-O(4a)	68.7(2)	O(4b)-La(1)-C(4a)	93.7(2)
O(1)-La(1)-O(4b)	164.1(2)	N(1)-La(1)-C(4)	118.4(2)
O(1)-La(1)-N(1)	62.5(1)	N(1)-La(1)-C(4a)	118.4(1)
O(1)-La(1)-C(4)	69.2(2)	C(4)–La(1)–C(4a)	99.2(2)
O(1)-La(1)-C(4a)	92.9(2)	O(2)-K(1)-La(1c)	114.5(2)
O(1a)–La(1)–O(1b)	100.4(2)	O(2h)–K(1)–La(1c)	114.5(2)
O(1a)-La(1)-O(3)	143.1(2)	O(2i)–K(1)–La(1c)	114.5(2)
O(1a)-La(1)-O(3a)	75.2(2)	O(3c)-K(1)-La(1c)	42.4(1)
O(1a)-La(1)-O(3b)	116.5(2)	O(3f)–K(1)–La(1c)	42.4(1)
O(1a)–La(1)–O(4)	164.1(2)	O(3g)-K(1)-La(1c)	42.4(1)
O(1a)–La(1)–O(4a)	71.4(2)	C(2)–K(1)–La(1c)	104.7(1)
O(1a)–La(1)–O(4b)	68.7(2)	C(2h)-K(1)-La(1c)	104.7(1)
O(1a)–La(1)–N(1)	62.5(1)	C(2i)-K(1)-La(1c)	104.7(1)
O(1a)–La(1)–C(4)	164.5(2)	La(1)–K(2)–La(1d)	112.52(3)
O(1a)–La(1)–C(4a)	69.2(2)	La(1)–K(2)–La(1e)	112.52(3)
O(1b)–La(1)–O(3)	116.5(2)	La(1d)–K(2)–La(1e)	112.52(3)
O(1b)–La(1)–O(3a)	143.1(2)	O(1)–K(2)–La(1)	30.3(1)
O(1b)–La(1)–O(3b)	75.2(2)	O(1)–K(2)–La(1d)	135.0(1)
O(1b)–La(1)–O(4)	68.7(2)	O(1)–K(2)–La(1e)	108.2(1)
O(1b)–La(1)–O(4a)	164.1(2)	O(1k)–K(2)–La(1)	135.0(1)
O(1b)–La(1)–O(4b)	71.4(2)	O(1k)–K(2)–La(1d)	108.2(1)
O(1b)–La(1)–N(1)	62.5(1)	O(1k)–K(2)–La(1e)	30.3(1)
O(1b)-La(1)-C(4)	92.9(2)	O(11)–K(2)–La(1)	108.2(1)
O(1b)-La(1)-C(4a)	164.5(2)	O(11)–K(2)–La(1d)	30.3(1)
O(3)–La(1)–O(3a)	74.6(2)	O(11)–K(2)–La(1e)	135.0(1)
O(3)–La(1)–O(3b)	74.6(2)	O(4a)–K(2)–La(1)	32.4(1)
O(3)–La(1)–O(4)	49.5(1)	O(4a)–K(2)–La(1d)	93.8(1)
O(3)-La(1)-O(4a)	73.0(2)	O(4a) - K(2) - La(1e)	98.8(1)

Table S7. Selected bond distances (Å) and angles (\degree) for $K_{2n}[La(nta)_2]_n nH_2O(2)$.

O(3)–La(1)–O(4b)	120.6(2)	O(4d)–K(2)–La(1)	98.8(1)
O(3)–La(1)–N(1)	135.6(1)	O(4d)-K(2)-La(1d)	32.4(1)
O(3)-La(1)-C(4)	25.1(2)	O(4d)-K(2)-La(1e)	93.8(1)
O(3)–La(1)–C(4a)	74.5(2)	O(4j)–K(2)–La(1)	93.8(1)
O(3a)-La(1)-O(3b)	74.6(2)	O(4j)-K(2)-La(1d)	98.8(1)
O(3a)–La(1)–O(4)	120.6(2)	O(4j)–K(2)–La(1e)	32.4(1)
O(3a)–La(1)–O(4a)	49.5(1)	O(1W)-K(2)-La(1)	106.22(4)
O(3a)–La(1)–O(4b)	73.0(2)	O(1W)-K(2)-La(1d)	106.22(4)
O(3a)–La(1)–N(1)	135.6(1)	O(1W)–K(2)–La(1e)	106.22(4)
O(3a)–La(1)–C(4)	98.8(2)	La(1)–O(1)–K(2)	115.3(2)
O(3a)–La(1)–C(4a)	25.1(2)	La(1)-O(4)-K(2c)	111.8(2)
O(3b)–La(1)–O(4)	73.0(2)	La(1)–O(3)–K(1d)	93.2(2)
O(3b)-La(1)-O(4a)	120.6(2)	O(3)–C(4)–La(1)	63.4(3)
O(3b)–La(1)–O(4b)	49.5(1)	O(4)–C(4)–La(1)	61.4(3)
O(3b)–La(1)–N(1)	135.6(1)	C(1)–N(1)–La(1)	108.3(5)
O(3b)–La(1)–C(4)	74.5(2)	C(1a)–N(1)–La(1)	108.3(5)
O(3b)-La(1)-C(4a)	98.8(2)	C(1b)–N(1)–La(1)	108.3(5)
O(4)–La(1)–O(4a)	116.04(7)	C(2)–O(1)–La(1)	120.7(4)
O(4)–La(1)–O(4b)	116.04(7)	C(3)–C(4)–La(1)	170.6(5)
O(4)–La(1)–N(1)	101.6(1)	C(4)–O(3)–La(1)	91.5(4)
O(4)–La(1)–C(4)	24.6(2)	C(4)–O(4)–La(1)	94.0(4)
O(4)-La(1)-C(4a)	123.8(2)		

Symmetry codes: (a) y, z, x; (b) z, x, y; (c) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (d) $1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$; (e) $\frac{1}{2} + x, \frac{1}{2} - y, 1 - z$; (f) $1 - z, \frac{1}{2} + x, \frac{1}{2} - y$; (g) $1 - y, \frac{1}{2} + z, \frac{1}{2} - x$; (h) $\frac{1}{2} - y, 1 - z, -\frac{1}{2} + x$; (i) $\frac{1}{2} + z, \frac{1}{2} - x$, 1 - y; (j) $\frac{1}{2} + z, \frac{1}{2} - x, 1 - y$; (k) $\frac{1}{2} + y, \frac{1}{2} - z, 1 - x$; (l) $1 - z, -\frac{1}{2} + x, \frac{1}{2} - y$;

$(H_2 en)_n [La(edta)(H_2)]$	$O)]_{2n} \cdot 10nH_2O(3).$		
La(1)–O(1)	2.564(4)	La(2)–O(11)	2.476(8)
La(1)–O(3)	2.500(5)	La(2)–O(13)	2.534(7)
La(1)–O(5)	2.454(5)	La(2)–O(15)	2.519(5)
La(1)–O(7)	2.583(4)	La(2)–O(2W)	2.547(5)
La(1)–O(7a)	2.656(4)	La(2)–N(3)	2.854(6)
La(1)–O(8a)	2.724(5)	La(2)–N(4)	2.835(6)
La(1)–O(16b)	2.536(5)	La(2)–C(11c)	3.093(9)
La(1)–O(1W)	2.552(4)	La(1a)–O(7)	2.656(4)
La(1)–N(1)	2.859(5)	La(1a)–O(8)	2.723(5)
La(1)–N(2)	2.848(5)	La(1a)–C(9)	3.049(7)
La(1)–C(9a)	3.049(7)	La(1b)–O(16)	2.536(5)
La(2)–O(2)	2.537(5)	La(2c)–O(9)	2.691(6)
La(2)–O(9)	2.572(6)	La(2c)–O(10)	2.773(7)
La(2)–O(9c)	2.691(6)	La(2c)–C(11)	3.093(9)
La(2)–O(10c)	2.773(7)		
O(1)–La(1)–O(3)	79.3(2)	O(9)-La(2)-N(4)	88.4(2)
O(1)–La(1)–O(5)	78.8(1)	O(9)–La(2)–C(11c)	79.6(2)
O(1)-La(1)-O(7)	144.4(1)	O(9c)-La(2)-O(10c)	47.2(2)
O(1)-La(1)-O(7a)	121.6(1)	O(9c)-La(2)-O(11)	150.6(2)
O(1)-La(1)-O(8a)	73.6(2)	O(9c)-La(2)-O(13)	76.3(2)
O(1)-La(1)-O(16b)	70.7(2)	O(9c)-La(2)-O(15)	120.3(2)
O(1)-La(1)-O(1W)	144.5(1)	O(9c)-La(2)-O(2W)	71.8(2)
O(1)-La(1)-N(1)	59.7(2)	O(9c)-La(2)-N(3)	115.5(2)
O(1)-La(1)-N(2)	120.3(2)	O(9c)-La(2)-N(4)	136.5(2)
O(1)-La(1)-C(9a)	97.4(2)	O(9c)–La(2)–C(11c)	24.3(2)
O(3)–La(1)–O(5)	133.2(2)	O(11)-La(2)-O(10c)	136.0(2)
O(3)–La(1)–O(7)	65.9(1)	O(10c)-La(2)-O(13)	67.1(2)
O(3)-La(1)-O(7a)	82.4(1)	O(10c)-La(2)-O(15)	74.0(2)
O(3)-La(1)-O(8a)	72.4(2)	O(10c)-La(2)-O(2W)	106.4(2)
O(3)–La(1)–O(16b)	135.2(2)	O(10c)-La(2)-N(3)	161.3(2)
O(3)-La(1)-O(1W)	136.0(2)	O(10c)-La(2)-N(4)	121.5(2)
O(3)–La(1)–N(1)	63.1(2)	O(10c)-La(2)-C(11c)	23.7(2)
O(3)–La(1)–N(2)	95.4(2)	O(11)-La(2)-O(13)	133.1(2)
O(3)-La(1)-C(9a)	72.9(2)	O(11)–La(2)–O(15)	77.8(2)
O(5)-La(1)-O(7)	120.2(1)	O(11)-La(2)-O(2W)	81.3(2)
O(5)–La(1)–O(7a)	143.8(1)	O(11)-La(2)-N(3)	62.1(2)
O(5)–La(1)–O(8a)	137.2(1)	O(11)-La(2)-N(4)	71.1(2)
O(5)–La(1)–O(16b)	72.6(2)	O(11)-La(2)-C(11c)	154.1(2)
O(5)-La(1)-O(1W)	77.1(1)	O(13)–La(2)–O(15)	72.1(2)
O(5)–La(1)–N(1)	70.1(1)	O(13)–La(2)–O(2W)	138.7(2)
O(5)-La(1)-N(2)	62.3(1)	O(13)–La(2)–N(3)	104.8(2)

Table S8. Selected bond distances (\mathring{A}) and angles (\degree) for $(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (**3**).

O(5)-La(1)-C(9a)	150.8(2)	O(13)–La(2)–N(4)	63.4(2)
O(7)-La(1)-O(7a)	62.2(2)	O(13)-La(2)-C(11c)	65.6(2)
O(7)-La(1)-O(8a)	100.9(1)	O(15)-La(2)-O(2W)	147.9(2)
O(7)–La(1)–O(16b)	141.0(1)	O(15)-La(2)-N(3)	120.8(2)
O(7)-La(1)-O(1W)	71.0(1)	O(15)-La(2)-N(4)	63.0(2)
O(7)–La(1)–N(1)	96.5(1)	O(15)-La(2)-C(11c)	96.1(2)
O(7)-La(1)-N(2)	59.5(1)	O(2W)-La(2)-N(3)	67.8(2)
O(7)-La(1)-C(9a)	79.5(1)	O(2W)-La(2)-N(4)	131.2(2)
O(7a)–La(1)–O(8a)	48.0(1)	O(2W)–La(2)–C(11c)	92.2(2)
O(7a)–La(1)–O(16b)	85.9(2)	N(3)-La(2)-N(4)	63.9(2)
O(7a)–La(1)–O(1W)	70.0(1)	N(3)-La(2)-C(11c)	138.0(2)
O(7a)–La(1)–N(1)	145.1(1)	N(4)-La(2)-C(11c)	128.6(2)
O(7a)-La(1)-N(2)	116.3(1)	La(1)–O(7)–La(1a)	117.8(2)
O(7a)–La(1)–C(9a)	24.4(1)	C(1)–O(1)–La(1)	123.1(4)
O(8a)–La(1)–O(16b)	67.8(2)	C(3)–O(3)–La(1)	129.4(5)
O(8a)-La(1)-O(1W)	108.7(2)	C(7)–O(5)–La(1)	131.0(4)
O(8a)–La(1)–N(1)	119.2(1)	C(9)–O(7)–La(1)	122.6(4)
O(8a)-La(1)-N(2)	160.3(1)	C(2)–N(1)–La(1)	106.1(3)
O(8a)-La(1)-C(9a)	24.1(1)	C(4)–N(1)–La(1)	109.2(4)
O(16b)-La(1)-O(1W)	77.5(2)	C(5)–N(1)–La(1)	110.6(3)
O(16b)-La(1)-N(1)	122.0(2)	C(6)–N(2)–La(1)	104.9(3)
O(16b)-La(1)-N(2)	128.2(2)	C(8)–N(2)–La(1)	110.4(3)
O(16b)-La(1)-C(9a)	78.8(2)	C(10)–N(2)–La(1)	110.7(4)
O(1W)-La(1)-N(1)	132.1(2)	C(9)–O(7)–La(1a)	95.5(4)
O(1W)-La(1)-N(2)	69.1(1)	C(9)–O(8)–La(1a)	92.7(4)
O(1W)-La(1)-C(9a)	91.4(2)	C(19)–O(16)–La(1b)	151.3(5)
N(1)-La(1)-N(2)	65.1(1)	La(2)–O(9)–La(2c)	118.4(2)
N(1)-La(1)-C(9a)	138.2(1)	C(1)-O(2)-La(2)	146.0(5)
N(2)-La(1)-C(9a)	132.9(2)	C(11)-O(9)-La(2)	124.5(6)
O(2)-La(2)-O(9)	139.1(2)	C(13)-O(11)-La(2)	130.3(7)
O(2)-La(2)-O(9c)	87.7(2)	C(17)–O(13)–La(2)	126.8(6)
O(2)-La(2)-O(10c)	68.7(2)	C(19)–O(15)–La(2)	128.4(5)
O(2)–La(2)–O(11)	72.9(2)	C(12)–N(3)–La(2)	109.5(5)
O(2)-La(2)-O(13)	131.8(2)	C(14)–N(3)–La(2)	108.4(5)
O(2)-La(2)-O(15)	78.1(2)	C(15)–N(3)–La(2)	109.8(6)
O(2)-La(2)-O(2W)	72.6(2)	C(16)–N(4)–La(2)	112.8(4)
O(2)-La(2)-N(3)	123.0(2)	C(18)–N(4)–La(2)	108.0(5)
O(2)-La(2)-N(4)	131.2(2)	C(20)-N(4)-La(2)	107.3(4)
O(2)–La(2)–C(11c)	81.2(2)	O(7)–C(9)–La(1a)	60.1(3)
O(9)-La(2)-O(9c)	61.6(2)	O(8)–C(9)–La(1a)	63.1(4)
O(9)-La(2)-O(10c)	102.0(2)	C(10)–C(9)–La(1a)	165.7(4)
O(9)–La(2)–O(11)	121.2(2)	C(11)-O(9)-La(2c)	95.8(5)
O(9)-La(2)-O(13)	69.6(2)	C(11)-O(10)-La(2c)	92.7(5)
O(9)–La(2)–O(15)	139.6(2)	O(9)–C(11)–La(2c)	60.0(5)

O(9)–La(2)–O(2W)	72.4(2)	O(10)-C(11)-La(2c)	63.6(5)
O(9)–La(2)–N(3)	59.5(2)	C(12)-C(11)-La(2c)	159.6(5)
Symmetry codes: (a) 1 -	-x, 2-y, 2-z; (b) $1-x,$	2 - y, 1 - z; (c) $1 - x, 1 - z$	<i>y</i> , 1 − <i>z</i> ;

D–H····A	D-H(Å)	H ··· A(Å)	D····A(Å)	D–H····A()
O_{1w} – $H \cdots O_{6wa}$	0.89	1.95	2.810(4)	163
O_{1w} – $H \cdots Cl_{1b}$	0.89	2.35	3.196(3)	159
O_{2w} – $H \cdots O_{4c}$	0.88	1.89	2.758(4)	168
O_{2w} – $H \cdots O_{1wd}$	0.88	2.03	2.865(4)	157
O_{3w} – $H \cdots O_{2we}$	0.85	2.24	3.071(4)	165
O_{3w} – $H \cdots O_{4w}$	0.85	1.90	2.753(4)	177
$O_{4w}\!\!-\!\!H\cdots O_{5w}$	0.85	1.95	2.767(4)	162
$O_{4w}\!\!-\!\!H\cdots O_{6wf}$	0.85	2.01	2.845(4)	169
$O_{5w}\!\!-\!\!H\cdots O_{4f}$	0.85	1.96	2.801(4)	174
O_{5w} – $H \cdots Cl_{1g}$	0.85	2.30	3.148(3)	177
O_{6w} – $H \cdots O_3$	0.85	1.95	2.777(4)	164
$O_{6w}\!\!-\!\!H\cdots O_{4f}$	0.85	1.97	2.809(4)	169
$N_1\!\!-\!\!H\cdots\!O_{3w}$	0.91	1.89	2.769(4)	160
$N_1\!\!-\!\!H\cdots\!Cl_{1h}$	0.91	2.33	3.203(3)	162
N_2 – $H \cdots O_{5wa}$	0.91	1.91	2.814(4)	174
N_2 – $H \cdots Cl_1$	0.91	2.33	3.097(3)	142

Table S9. Selected bond distances (Å) and angles ($^{\circ}$) within the water layer in $[La(Hida)_2(H_2O)_2]_n$ nCl 4nH₂O (1).

Symmetry codes: (a) 1 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (b) $\frac{1}{2} + x$, y, $\frac{1}{2} - z$; (c) $-\frac{1}{2} + x$, $\frac{1}{2} - y$, 1 - z; (d) $-\frac{1}{2} + x$, y, $\frac{1}{2} - z$; (e) 1 + x, y, z; (f) 2 - x, -y, 1 - z; (g) $1\frac{1}{2} - x$, $-\frac{1}{2} + y$, z; (h) $\frac{1}{2} - x$, $-\frac{1}{2} + y$, z;

D–H···A	D-H(Å)	H ··· A(Å)	D…A(Å)	D–H•••A(%
$N_5 - H \cdots O_2$	0.90	1.94	2.838(8)	179
$N_6 - H \cdots O_{10}$	0.90	2.05	2.942(8)	174
N ₆ −H ·· O ₁₁	0.90	2.47	3.036(8)	121
$N_6 - H \cdots O_{8a}$	0.90	1.94	2.807(8)	161
$O_7 - H \cdots O_{5h}$	0.85	1.90	2.729(6)	162
О ₁₈ -Н ···О _{12c}	0.86	2.32	2.721(6)	109

Table S10. Selected bond distances (Å) and angles (\degree) within the water layer in $(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (**3**).

Symmetry codes: (a) -x, -1 - y, 1 - z; (b) -x, -1 - y, -z; (c) -1 - x, -1 - y, 1 - z;

Complexes	La–O _{carboxy} (av	La–N(av)	La–O _w (av)
$[La(Hida)_2(H_2O)_2]_n nCl 4nH_2O (1)$	2.599(2)	_	2.668(2)
$K_{2n}[La(nta)_2]_n nH_2O(2)$	2.616(5)	2.68(1)	_
$(H_2en)_n[La(edta)(H_2O)]_{2n} \cdot 10nH_2O$ (3)	2.580(8)	2.849(6)	2.550(5)
${La(H_2O)_4[La(1,3-pdta)(H_2O)]_3}_n \cdot 11.25nH_2O$ (4) ¹	2.621(7)	2.876(7)	2.521(9)
$[LaZn(Hida)(ida)_2 \ 0.5H_2O]_n \ (5)^2$	2.615(3)	-	_
${[La_2Cu(mida)_4(H_2O)_6](H_2O)_4}$ (6) ³	2.622(3)	2.876(3)	2.587(2)
${[La_2Ni(mida)_4(H_2O)_6](H_2O)_4}$ (7) ⁴	2.636(2)	2.864(2)	2.560(2)
[La(bzlida)(Hbzlida)] $H_2O(8)^5$	2.540(2)	2.880(2)	2.634(2)
$[La(nta)(H_2O)]_n (9)^6$	2.561(4)	2.825(5)	2.569(4)
$[La(nta)(H_2O)]_n (9a)^7$	2.560(4)	2.827(5)	2.558(4)
Na[La(edta)(H ₂ O) ₃] 5H ₂ O (10) ⁸	2.493(4)	2.768(4)	2.589(4)
${[La(edta)(H_2O)]_2}_n (11)^9$	2.524(3)	2.849(4)	2.655(4)
$[La_5Cl_2(edta)_3(H_2O)_{18}]_nCl_n \ 8nH_2O \ (12)^{10}$	2.57(1)	2.82(1)	_
$Na_{12n}[La(edta)(HPO_3)]_{4n} 8nNaCl 4nH_2O$ (13) ¹¹	2.570(7)	2.822(8)	_
$Na_{12n}[La(edta)(CO_3)]_{4n}$ 8nNaCl 4nH ₂ O (14) ¹¹	2.572(6)	2.829(7)	_
$K_{3n}[La(edta)(HPO_3)]_n 7nH_2O(15)^{12}$	2.545(7)	2.793(9)	_
$[La_2(NO_3)_2(edta)(H_2O)_5]_n \ \Im nH_2O \ (\textbf{16})^{10}$	2.515(3)	2.746(3)	_
$[La_2(SO_4)(edta)(H_2O)_3]_n (17)^{10}$	2.612(3)	2.786(4)	2.532(3)
$K_6[La_2(Hmal)_2(edta)_2] \cdot 14H_2O (18)^{13}$	2.563(2)	2.801(2)	_
(NH ₄) ₈ [La ₂ (Hcit) ₂ (edta) ₂] 9H ₂ O (19) ¹³	2.563(2)	2.814(2)	_
$K_8[La_2(Hcit)_2(edta)_2] \cdot 16H_2O (20)^{13}$	2.563(7)	2.785(9)	_
$K_4(NH_4)_4[La_2(Hcit)_2(edta)_2] \cdot 17H_2O(21)^{14}$	2.568(5)	2.809(6)	-
$K_2(NH_4)_8\{[La(edta)(H_2O)_2]_2 \ [La_2(Hcit)_2(edta)_2]\} 22H_2O(22)^{14}$	2.549(3)	2.805(3)	2.650(3)

Table S11. Comparisons of selected bond distances (Å) for 1 - 33.

$(NH_4)_2[La_2(1,3-pdta)_2(H_2O)_4] 8H_2O(23)^{15}$	2.531(2)	2.840(2)	2.574(2)
$K_2[La_2(1,3-pdta)_2(H_2O)_4] \cdot 11H_2O(24)^{15}$	2.531(2)	2.832(2)	2.584(2)
$[La(1,3-Hpdta)]_n nH_2O(25)^{16}$	2.571(4)	2.858(3)	_
$[La(1,3-H_2pdta)(H_2O)_2]_n Cl_n 2nH_2O (\textbf{26})^{16}$	2.505(2)	-	2.553(2)
$[La(1,3-H_3pdta)(H_2O)_5]_n \ 2Cl_n \ 3nH_2O \ (\textbf{27})^{16}$	2.562(2)	_	2.566(5)
${La(H_2O)_4[La(1,3-pdta)(H_2O)]_3}_n (28)^{17}$	2.495(3)	2.881(4)	2.536(3)
$(H_2en)_n[La_2(1,3-pdta)_2(H_2O)_2]_n 5nH_2O (29)^{18}$	2.597(5)	2.867(5)	2.530(5)
$(NH_4)_{2n}[La_2(1,3-pdta)_2(H_2O)_2]_n 4.5nH_2O$ (30) ¹⁸	2.590(6)	2.871(7)	2.541(5)
$[La_2(1,3-pdta)_2(H_2O)_4]_n [Sr_2(H_2O)_6]_n$	2.542(3)/	2.864(4)/	2.504(3)/
$[La_2(1,3-pdta)_2(H_2O)_2]_n \cdot 18nH_2O(31)^{15}$	2.555(3)	2.861(4)	2.557(3)
$K_4[La_2(dtpa)_2(H_2O)] 8H_2O (32)^{19}$	2.548(6)	2.848(6)	2.675(5)
K[KLa(Httha)(H ₂ O)] 8H ₂ O (33) ²⁰	2.557(2)	2.807(3)	_

- M. L. Chen, Y. C. Guo, F. Yang, J. X. Liang, Z. X. Cao and Z. H. Zhou, *Dalton Trans.*, 2014, 43, 6026–6031.
- H. B. Xu, Y. H. Zhao, Z. M. Su, G. H. Li, Y. Ma, K. Z. Shao, D. X. Zhu, H. J. Zhang and S. M. Yue, *Chem. Lett.*, 2004, **33**, 446–447.
- G. L. Zhuang, W. X. Chen, G. N. Zeng, J. G. Wang and W. L. Chen, *CrystEngComm*, 2012, 14, 679–683.
- 4. W. X. Chen, G. L. Zhuang and S. T. Wu, Z. Anorg. Allg. Chem., 2013, 639, 817–820.
- 5. R. Puentes, J. Torres, C. Kremer, J. Cano, F. Lloret, D. Capucci and A. Bacchi, *Dalton Trans.*, 2016, **45**, 5356–5373.
- 6. Q. Z. Zhang, C. Z. Lu, W. B. Yang and Y. Q. Yu, *Inorg. Chem. Commun*, 2004, 7, 277–279.
- 7. L. Huang, L. P. Zhang and L. P. Jin, J. Mol. Struct., 2004, 692, 121–126.
- 8. K. Nakamura, T. Kurisaki, H. Wakita and T. Yamaguchi, *Acta Crystallogr. C*, 1995, C51, 1559–1563.
- 9. D. B. Xiong, H. H. Chen, X. X. Yang and J. T. Zhao, *Inorg. Chim. Acta*, 2007, **360**, 1616–1620.
- Y. C. Guo, Y. H. Hou, X. Dong, Y. C. Yang, W. S. Xia, W. Z. Weng and Z. H. Zhou, *Inorg. Chim. Acta*, 2015, 434, 221–229.
- 11. S. Y. Wang, S. Gao, J. W. Dai, Y. R. Shi, X. Dong, W. Z. Weng and Z. H. Zhou, *Dalton Trans.*, 2019, **48**, 2959–2966.
- 12. S. Gao, M. L. Chen and Z. H. Zhou, *Dalton Trans.*, 2014, 43, 639–645.
- 13. M. L. Chen, S. Gao and Z. H. Zhou, *Dalton Trans.*, 2012, 41, 1202–1209.
- 14. M. L. Chen, Z. Xu and Z. H. Zhou, Polyhedron, 2018, 153, 213–217.

- 15. M. L. Chen, Y. H. Hou, W. S. Xia, W. Z. Weng, Z. X. Cao, Z. H. Zhou and H. L. Wan, *Dalton Trans.*, 2014, **43**, 8690-8697.
- 16. S. B. Etcheverry, M. C. Apella and E. J. Baran, J. Inorg. Biochem., 1984, 20, 269-274.
- 17. C. Streb, D. L. Long and L. Cronin, *Chem. Commun.*, 2007, DOI: 10.1039/b613808j, 471-473.
- 18. M. L. Chen, Y. Y. Feng, S. Y. Wang, Y. H. Cheng and Z. H. Zhou, ACS Appl. Mater. Interfaces, 2020, 12, 1412-1418.
- 19. S. Gao, S. J. George and Z. H. Zhou, *Dalton Trans.*, 2016, 45, 5388-5394.
- 20. R. Y. Wang, J. R. Li, T. Z. Jin, G. X. Xu, Z. Y. Zhou and X. G. Zhou, *Polyhedron*, 1997, **16**, 1361-1364.