Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information

Photo-controlled bipolar absorption switches based on 5-dimethylamino substituted indoline spiropyrans with semipermanent merocyanines

Anatoly Metelitsa^{*a}, Anatoly Chernyshev ^a, Nikolai Voloshin ^a, Oleg Demidov ^b, Ekaterina Solov'eva ^a, Irina Rostovtseva ^a and Elena Gaeva ^a

^a Institute of Physical and Organic Chemistry, Southern Federal University,

Stachki Av., 194/2, Rostov on Don, 344090, Russia.

*E-mail address: avmetelitsa@sfedu.ru.

b North-Caucasus Federal University,
Dzerzhinsky str. 120/3, Stavropol, 355035, Russia.
E-mail address: odemidov@ncfu.ru

Fig. S1. ¹H NMR spectrum of SPP 1 in CDCl₃.

Fig. S2. 2D NMR ¹H-¹H COSY spectrum of SPP 1 in CDCl₃.

Fig. S4. 2D NMR HSQC ¹H-¹³C spectrum of SPP **1** in CDCl₃ (expansion 4.6 to 9.2 ppm).

Fig. S5. 2D NMR HMBC ¹H-¹³C spectrum of SPP 1 in CDCl₃.

Fig. S6. ¹H NMR spectrum of SPP 2 in CDCl₃.

Fig. S7. ¹H NMR spectrum of SPP **2** in CDCl₃ (expansion 7.0 to 8.2 ppm).

Fig. S8. ¹H NMR spectrum of SPP 3 in CDCl₃.

Fig. S9. ¹H NMR spectrum of SPP 3 in CDCl₃ (expansion 6.4 to 8.2 ppm).

Fig. S10. 2D NMR ¹H-¹H COSY spectrum of SPP 3 in CDCl₃.

Fig. S11. 2D NMR ¹H-¹H COSY spectrum of SPP 3 in CDCl₃ (expansion 5.6 to 9.4 ppm).

Fig. S12. 2D NMR HSQC ¹H-¹³C spectrum of SPP 3 in CDCl₃.

Fig. S13. 2D NMR HSQC ¹H-¹³C spectrum of SPP 3 in CDCl₃ (expansion 5.2 to 9.4 ppm).

Fig. S14. 2D NMR HMBC ¹H-¹³C spectrum of SPP 3 in CDCl₃.

Fig. S15. Absorption spectra of the equilibrium mixture of cyclic forms **A** and merocyanine isomers **B** of SPPs **1-3** in acetonitrile at 293 K.

Fig. S16. Absorption spectra of the equilibrium mixture of cyclic isomers **A** and merocyanines **B** of SPP **1** in different solvents: toluene, acetone and acetonitrile at 293 K.

Fig. S17. Absorption spectra of the equilibrium mixture of cyclic isomers **A** and merocyanines **B** of SPP **2** in different solvents: toluene, acetone and acetonitrile at 293 K.

Fig. S18 Spectral and kinetic profile of the operating cycle of the bipolar absorption switch based on SPP **3** in acetone (insert: Kinetic profile at the maximum of the absorption band of the MC isomer).

Fig. S19 Spectral and kinetic profile of the operating cycle of the bipolar absorption switch based on SPP **2** in acetone (insert: Kinetic profile at the maximum of the absorption band of the MC isomer).

Fig. S20 Spectral and kinetic profile of the operating cycle of the bipolar absorption switch based on SPP **1** in acetone (insert: Kinetic profile at the maximum of the absorption band of the MC isomer).