Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information for

In-situ fabrication of Ni-Fe-S hollow hierarchical sphere: An efficient (pre)catalyst for OER and HER

Zhuoxun Yin,^{*,a,*} Shu Zhang, ^{a,*}Jinlong Li, ^a Shang kun Ma, ^a Wei Chen, ^a Xinzhi Ma,^{*,b} Yang Zhou,^{*,c} Zhuanfang Zhang, ^a Xin Wang,^a

a College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China. E-mail: yzx@qqhru.edu.cn;

c Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China. E-mail: maxz@hrbnu.edu.cn

c College of Science, Qiqihar University, Qiqihar 161006, China. E-mail: 373133430@qq.com;

* Corresponding author.
E-mail addresses: yzx@qqhru.edu.cn
Corresponding author.
E-mail addresses: maxz@hrbnu.edu.cn
Corresponding author.
E-mail addresses: 373133430@ qq.com
*Zhuoxun Yin and Shu Zhang made equal contributions to this work.

Figure S1 Electrochemical measurements of Ni_xFe_yS , (a) OER in 1.0 M KOH, (b) HER in 1.0 M KOH,

Figure S2 Structural characterization of the Ni-S hierarchical sphere, a) low-resolution TEM image, b) the microcosmic structures of surface, c) HRTEM image and the scale bar in the inset: 1 nm, d) EDX elemental mapping images of Ni, S.

Figure S3 Structural characterization of the Fe-S hierarchical sphere, a) low-resolution TEM image, b) the microcosmic structures of surface, c) HRTEM image and the scale bar in the inset: 1 nm, d) EDX elemental mapping images of Fe, S.

Figure S4 Comparison of XPS spectrum of Ni-S, Fe-S and Ni-Fe-S. a,b)Ni 2p c,d) Fe 2p e,f,g) s 2p

Figure S5 The cyclic voltammograms curves of Microspheres a) Ni-S, b) Fe-S, c) Ni-Fe-S and d) C_{dl} for Ni-S, Fe-S, Ni-Fe-S toward to OER.

Figure S6 The OER TOFs of the Ni-S, Fe-S, Ni-Fe-S

Figure S7 The polarization curves of Ni-Fe-O and Ni-Fe-S toward the OER

Figure S8 XRD patterns of after the OER process for Ni-Fe-S

Figure S9 SEM images of Ni-Fe-S catalysts after OER

Figure S10 TEM images of Ni-Fe-S catalysts after OER

Figure S11 The XPS spectrum of Ni-Fe-S after OER a)Ni 2p b) Fe 2p c) s 2p

Figure S12 The cyclic voltammograms curves of Microspheres a) Ni-S, b) Fe-S, c) Ni-Fe-S and d) C_{dl} for Ni-S, Fe-S, Ni-Fe-S toward to HER.

Figure S 13 The HER TOFs of the Ni-S, Fe-S, Ni-Fe-S

Figure S 14 The polarization curves of Ni-Fe-O and Ni-Fe-S toward the HER

Figure S15 XRD patterns of after the OER process for Ni-Fe-S

Figure S16 SEM images of Ni-Fe-S catalysts after HER

Figure S17 TEM images of Ni-Fe-S catalysts after HER

Figure S18 The XPS spectrum of Ni-Fe-S after HER a)Ni 2p b) Fe 2p c) s 2p

	Ni-S	Fe-S	Ni-Fe-S	IrO ₂
Fe/Ni			1/3	
Overpotential	290 mV	400 mV	223 mV	280 mV
at 10 mA cm ⁻²				
anodic peak	1.41 V vs. RHE			
position				
Rct	$1.6 \ \Omega \ cm^2$	$1.8 \ \Omega \ cm^2$	$1.3 \ \Omega \ cm^2$	
Cdl	8.4 mF cm ⁻²	6.8 mF cm ⁻²	22.9 mF cm ⁻²	
surface area	$105 \text{ m}^2 \text{ g}^{-1}$	$123 \text{ m}^2 \text{ g}^{-1}$	$112 \text{ m}^2 \text{ g}^{-1}$	$131 \text{ m}^2 \text{ g}^{-1}$
bandgap	1.4 eV	0.8 eV	1.2 eV	0.5 eV

Table S1. The detailed parameters of Ni-S $\$ Fe-S, Ni-Fe-S and IrO2 toward the OER.

Catalysts	Overpotential at 10 mA cm ⁻² (mV vs RHE)	Electrolyte concentration (pH)	Ref.
Ni-Fe-S	223	14	This work
Ni/NiO@G-SH	270	14	7
Ni/Ni(OH) ₂	310	14	8
CF@NiPx	200	14	11
NiC _{0.2} NS/Ni/CF	228	14	12
NCN/CC	247	14	13
C doped Co/Co ₃ O ₄ hollow spheres	352	14	19
CoP	280	14	20
CoS_2 - MoS_2	288	14	22
CoM-P-3DHFLMs	292	14	29
CoCu-ZIF@GDY	250	14	30
Ni ₄ Cu ₂ @C	280	14	31
Co/Fe	378	14	32
Ni-Mo-S/CC	300	14	33
ECT-S-Co _{0.37} Ni _{0.26} Fe _{0.37} O	232	14	34
FeNi ₃ N-Ni ₃ S	230	14	35
CoCuNCNT@PC-700-2	340	14	36
H-NiFe oxyphosphide	253	14	37
Co–Fe–P–Se	270	14	38

 Table S2. Comparison of OER activity of the Ni-Fe-S with recently reported catalyst.

	Ni-S	Fe-S	Ni-Fe-S	Pt
Fe/Ni			1/3	
Overpotential	228 mV	> 660 mV	115 mV	16 mV
at 10 mA cm ⁻²				
Rct	$1.5 \ \Omega \ cm^2$	$1.6 \ \Omega \ cm^2$	$1.4 \ \Omega \ cm^2$	
Cdl	8.4 mF cm ⁻²	6.8 mF cm ⁻²	22.9 mF cm ⁻²	
surface area	$105 \text{ m}^2 \text{ g}^{-1}$	$123 \text{ m}^2 \text{ g}^{-1}$	$112 \text{ m}^2 \text{ g}^{-1}$	
TOF	1.4 eV	0.8 eV	1.2 eV	0.5 eV

Table S3. The detailed parameters of Ni-S $\$ Fe-S, Ni-Fe-S and IrO2 toward the HER.

Catalysts	Overpotential at 10 mA cm ⁻² (mV vs RHE)	Electrolyte concentration (pH)	Ref.
Ni-Fe-S	115	14	This
			work
Ni/Ni(OH) ₂	168	14	8
NiS-NiS ₂ -Ni ₃ S ₂ /NF	137	14	9
NiS/NiS ₂	143	14	10
CF@NiPx	118	14	11
NiC _{0.2} NS/Ni/CF	121	14	12
β-Mo ₂ C/N	119	0	17
MoO ₂ -G	>150	0	23
Ni ₂ P@MoS ₂	181	14	25
Ni-Mo-S/CC	118	14	33

 Table S4. Comparison of HER activity of the Ni-Fe-S with recently reported catalyst.

Table S5. Comparison of the electrochemical performance of Ni-Fe-S | Ni-Fe-S as bifunctional catalysts for overall water splitting in 1.0 M KOH with recently published results.

Catalysts	Voltage at 10 mA cm ⁻² (V)	Electrolyte concentration (pH)	Ref.
Ni-Fe-S	1.57 1.59 (20 mA cm ⁻²)	14	This work
Co-P films	1.65	14	40
$Co_{0.9}S_{0.58}P_{0.42}$	1.59	14	41
CCF LDH-60	1.68	14	42
NiMoN-550	1.596	14	43
Ni _{0.69} Co _{0.31} -P	1.59	14	44
Co-NiMoN NRs	1.57	14	45
FeNi ₃ N/NG	1.585(20 mA cm ⁻²)	14	46
N, B co-doped Co ₃ C	>1.7	14	47
Mo ₂ C@NC/Co@NGs	>1.7	14	48
CoP	1.58	14	49