Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Influence of Chemical Composition on Proton Conductivity of

Microporous Organic Polymers Entrapped in

Nitrilotrimethylphosphonic Acid

Jiarui Du^a, Feng Zhang^{a*}, Xiaoqiang Liang^{b*}, and Fengyu Qu^{a*}

a. Key Laboratory of Photochemical Biomaterials and Energy Storage Materials,

Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin

Normal University, Harbin 150025, P. R. China

b. College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China

Fig. S1 TGA curves of MTN, MFN, NTP/MTN and NTP/MFN.

Fig. S2 SEM images of (a) MTN and (b) NTP/MTN.

Fig. S3 FT-IR spectra of NTP/MTN membranes.

Fig. S4 FT-IR spectra of NTP/MFN membranes.

Fig. S5 Nyquist plots of CS membranes at (a) ~98% RH and (b) ~76% RH.

Fig. S6 Nyquist plots of (a) NTP/MFN@CS-1, (b) NTP/MFN@CS-2 and (c) NTP/MFN@CS-4 (d) NTP/MFN@CS/NTP-1, (e) NTP/MFN@CS/NTP-2 and (f) NTP/MFN@CS/NTP-4 at ~98% RH.

Fig. S7 Nyquist plots of (a) NTP/MTN@CS-1, (b) NTP/MTN@CS-2 and (c) NTP/MTN@CS-4 (d) NTP/MTN@CS/NTP-1, (e) NTP/MTN@CS/NTP-2 and (f) NTP/MTN@CS/NTP-4 at ~98% RH.

Samples	C (%)	H (%)	N (%)	S (%)	P (%)
MFN	33.83	4.78	46.13	0	0.0003
NTP/MFN	28.67	4.74	33.83	0	0.085
MTN	45.12	3.33	30.14	4.13	0.0002
NTP/MTN	32.44	3.35	23.62	3.01	0.083

Table S1 CHN elemental analysis and ICP of MTN, NTP/MTN, MFN and NTP/MFN.

Table S2 Porosity parameters of MTN, NTP/MTN, MFN and NTP/MFN.

Samples	S_{BET} (cm ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)
MFN	230.07	0.38
NTP/MFN	42.33	0.11
MTN	785.09	1.13
NTP/MTN	185.07	0.69

Sample	IEC (meq g ⁻¹)	E _a (eV)	σ (S cm ⁻¹)
MFN	0.15	/	/
NTP/MFN	6.58	/	/
MTN	0.045	/	/
NTP/MTN	5.78	/	/
NTP/MFN@CS-1	3.20	0.88	1.9×10 ⁻²
NTP/MFN@CS-2	4.40	0.83	4.6×10 ⁻²
NTP/MFN@CS-4	3.14	0.20	5.5×10 ⁻³
NTP/MFN@CS/NTP-1	0.53	0.70	9.1×10 ⁻⁴
NTP/MFN@CS/NTP-2	0.25	0.98	3.4×10 ⁻³
NTP/MFN@CS/NTP-4	0.32	0.58	5.3×10 ⁻⁴
NTP/MTN@CS-1	1.19	0.21	1.1×10 ⁻³
NTP/MTN@CS-2	1.25	0.14	1.3×10 ⁻³
NTP/MTN@CS-4	0.95	0.35	3.4×10 ⁻³
NTP/MTN@CS/NTP-1	1.19	0.21	9.2×10 ⁻³
NTP/MTN@CS/NTP-2	0.56	0.18	1.1×10 ⁻³
NTP/MTN@CS/NTP-4	0.34	0.48	3.8×10 ⁻⁴
CS	0.20	0.32	1.1×10 ⁻⁴

Table S3 Ionic-exchange capability (IEC) and activation energy (E_a) of membranes.

Materials	Condition	σ/S cm ⁻¹	Reference
Ι	55 °C, 99% RH	6.17×10^{-2}	[1]
SZrTi	90°C, 100% RH	2.9×10^{-3}	[2]
Fe-NH ₃ -72h	80 °C, 95% RH	1.8×10^{-3}	[3]
c-PBI-30	200 °C, 100% RH	2.53×10^{-1}	[4]
FJU-80	80 °C, 98% RH	1.05×10^{-4}	[5]
COF-1-Li	40 °C, 98% RH	2.7×10^{-2}	[6]
COF-1-Na	40 °C, 98% RH	2.5×10^{-2}	[6]
NH ₄ PO ₃ /MO ₂	175 °C, 99% RH	8.5×10^{-3}	[7]
$BaCe_{(0.85-x)}Co_xGd_{0.15}O_{3-\delta}$	200 °C, 99% RH	4.81×10^{-3}	[8]
Nafion/BP3-1.0	50 °C, 80% RH	$8.5 imes 10^{-2}$	[9]
SPS/POM-BC-30	25 °C, 100% RH	5.3×10^{-2}	[10]
FJU-106	70 °C, 99% RH	1.8×10^{-2}	[11]
h-BN	55 °C, 99% RH	6.17×10^{-2}	[12]
Am3-sNCC-5	40 °C, 100% RH	4.3×10^{-2}	[13]
NUS-10(R)@PVDF-50	25 °C, 100% RH	5.16×10^{-3}	[14]
NTP/MFN@CS-2	50 °C, 98% RH	4.6 × 10 ⁻²	This work

Table S4 Proton conductivity of COF and membranes under ambient conditions.

Reference

[1] S. Thammakan, P. Rodlamul, N. Semakul, N. Yoshinari, A. Rujiwatra, *Inorg. Chem.*, 2020, **6**(59), 3518–3522.

[2] S. Sarirchi, S. Rowshanzamir, F. Mehri, Int. J. Energy Res., 2020, 44(4) 2783-2800.

[3] I.R. Salcedo, M. García, A. Cuesta, E.R. Losilla, A. Díaz, *Dalton Trans.*, 2020, **49**, 3981-3988.

[4] X. Li, H. Ma, P. Wang, Z. Liu, M.D. Guiver, *Chem. Mater.*, 2020, 3(32), 1182–1191.

[5] Z. Que, Y. Ye, Y. Yang, F. Xiang, Z. Zhang, Inorg. Chem., 2020, 5(59),

3053-3061.

[6] B. Zhou, J. B. Le, Z. Cheng, X. Zhao, H. Chen, ACS Appl. Mater. Interfaces, 2020, **12**(7), 8198-8205.

[7] C. Sun, U. Stimming, *Electrochim. Acta*, 2008, 53, 6417-6422.

[8] G. Accardo, D. Frattini, S.P. Yoon, J. Alloys Compd, 2020, 834, 155114.

[9] F.C. Teixeira, A.I.d. Sá, A.P.S. Teixeira, V.M. Ortiz-Martínez, C.M. Rangel, *Int. J. Hydrogen Energy*, 2020, **45**(31) 15495-15506.

[10] Y. Yin, H. Li, H. Wu, W. Wang, Z. Jiang, *Int. J. Hydrogen Energy*, 2020, **232**, 58-67.

[11] Q. Lin, Y. Ye, L. Liu, Z. Yao, Z. Li, L. Wang, C. Liu, Z. Zhang, S. Xiang, *Nano Res.*, 2020, **14**, 387–391.

[12] S.I. Yoon, K.Y. Ma, T.Y. Kim, H.S. Shin, J. Mater. Chem., 2020,8, 2898-2912.

[13] Q. Zhao, Y. Wei, C. Ni, L. Wang, Appl. Surf. Sci. 2019, 466, 691-702.

[14] Y. Peng, G. Xu, Z. Hu, Y. Cheng, C. Chi, D. Yuan, H. Cheng and D. Zhao, *ACS Appl. Mater. Interfaces*, 2016, **8**, 18505-18512.