
Water-assisted proton conductivity of two lanthanide supramolecules

Chen-Yu Mu, Zhi-Xiong Tao, Hong-Wei Wang, Miao Xue, Qing-Xu Wang, and Gang Li*

College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001,

Henan, China.

Supporting information

Fig. S1 Nyquiest curves (red) and analog equivalent circuit curves (green) of complex 1 at 40 or 100 ° C at 98% RH.

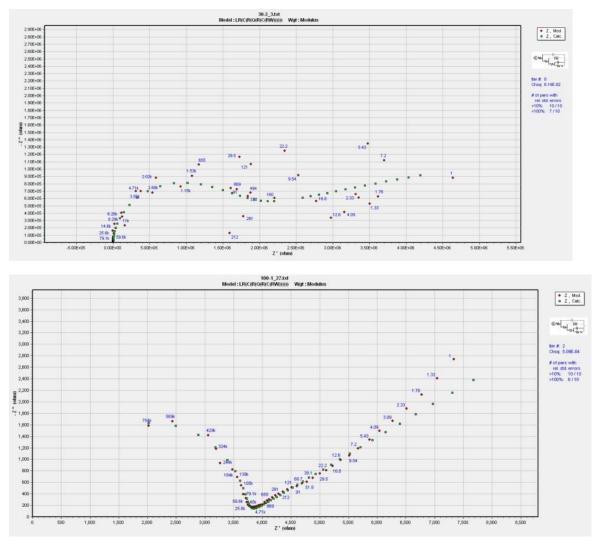


Fig. S2 Nyquiest curves (red) and analog equivalent circuit curves (green) of complex 2 at 30 or 100 ° C at 98% RH.

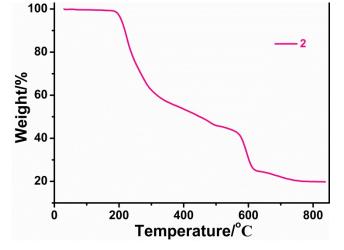


Fig. S3 TG curve of complex 2.

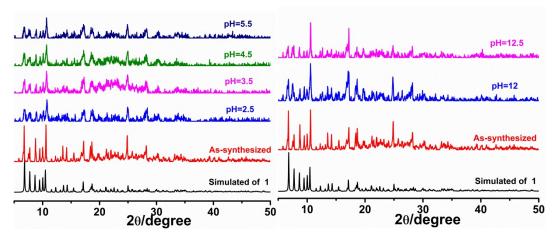


Fig. S4 PXRD patterns of 1: before and after soaking in acidic solution (left); (b) before and after soaking in basic solution (right).

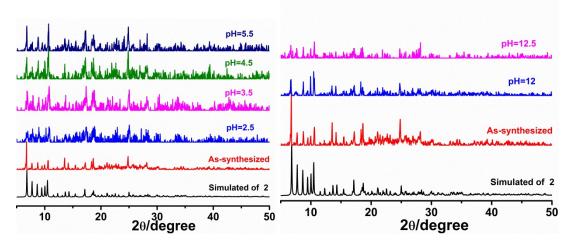


Fig. S5 PXRD patterns of 2: before and after soaking in acidic solution (left); (b) before and after soaking in basic solution (right).

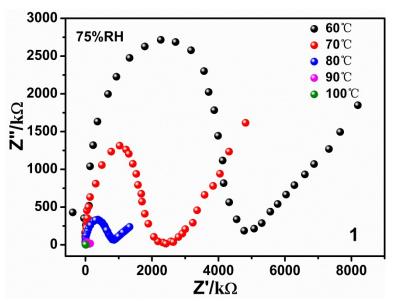


Fig. S6 Nyquist plots of 1 at 75% RH at different temperatures.

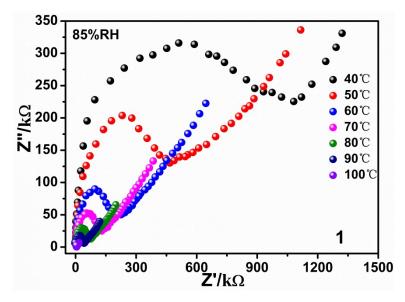


Fig. S7 Nyquist plots of ${\bf 1}$ at 85% RH at different temperatures.

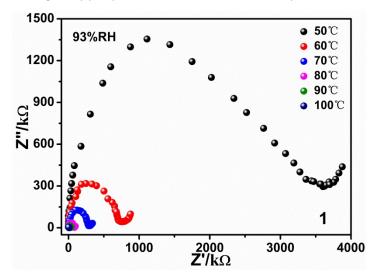


Fig. S8 Nyquist plots of 1 at 93% RH at different temperatures.

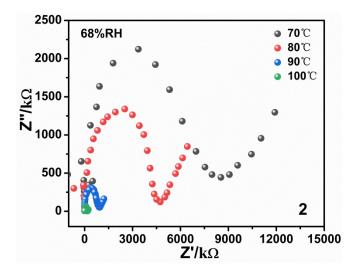


Fig. S9 Nyquist plots of 2 at 68% RH at different temperatures.

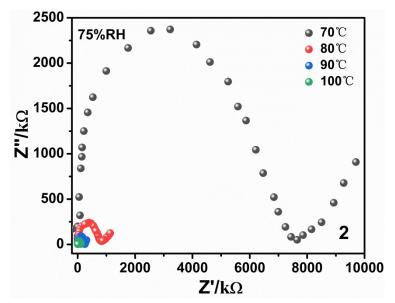


Fig. S10 Nyquist plots of 2 at 75% RH at different temperatures.

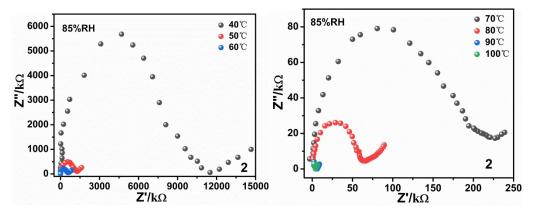


Fig. S11 Nyquist plots of 2 at 85% RHs at different temperatures.

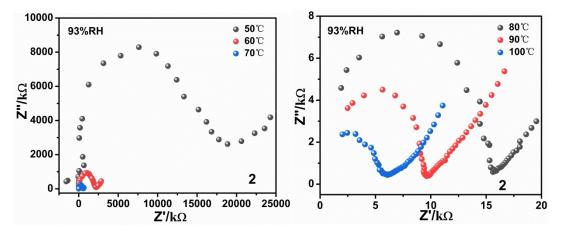


Fig. S12 Nyquist plots of 2 at different temperatures and at 93% RH.

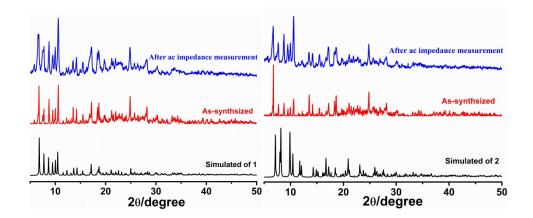


Fig. S13 PXRD patterns of 1 and 2 before and after electrochemical determinations.

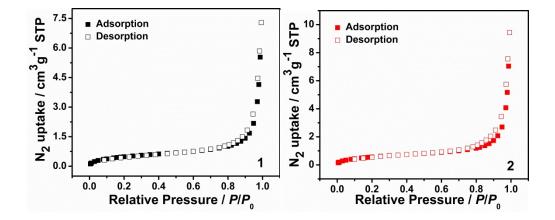


Fig. S14 N₂ adsorption/desorption curves of complex 1 and 2 at 77 K.

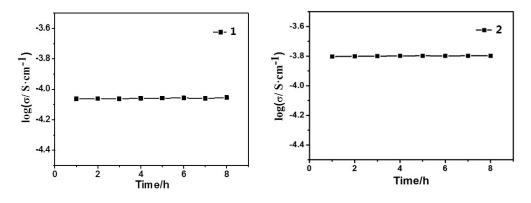


Fig. S15 Time-dependence of 1 and 2 at 98% RH and 100°C.

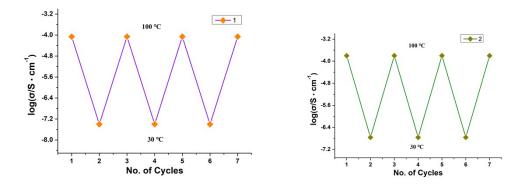


Fig. S16 Recyclability of 1 and 2 at 30 and 100°C and 98% RH.

	98%RH ^a	93%RH ^a	85%RH ^a	75%RH ^a			
30℃ ^b	$4.00 imes 10^{-8}$						
40°C ^b	$2.47 imes 10^{-8}$	1.62×10^{-7}					
50°C ^b	$1.30 imes 10^{-7}$	5.71×10^{-7}	$1.04 imes 10^{-6}$	5.20×10^{-8}			
60°C ^b	4.16×10^{7}	6.50×10^{-7}	2.47×10^{-6}	1.04×10^{-7}			
70°C ^b	$1.40 imes 10^{-6}$	1.68×10^{-6}	$4.00 imes 10^{-6}$	2.26×10^{-7}			
80°C ^b	$5.77 imes 10^{-6}$	6.50×10^{-6}	7.42×10^{-6}	6.50×10^{-7}			
90°C⁵	2.17×10^{-5}	3.46×10^{-5}	1.30×10^{-5}	5.77×10^{-6}			
100°C ^b	$0.87 imes 10^{-4}$	$6.50 imes 10^{-5}$	5.47×10^{-5}	4.00×10^{-5}			
^{<i>a</i>} Relative humidity ^{<i>b</i>} Temperature.							

Table S1 The σ values (S·cm⁻¹) of **1** under various RHs and temperatures

Table S2 The σ values (S·cm⁻¹) of **2** under various RHs and temperatures

	98%RH ^a	93%RH ^a	85%RH ^a	75%RH ^a	68RH% ^a		
30°C ^b	1.73×10^{-7}	-	-	-	-		
40°C ^b	5.00×10^{-7}	3.46×10^{-8}	-	-	-		
50°C ^b	1.30×10^{-6}	$2.60 imes 10^{-8}$	4.00×10^{-7}	1.40×10^{-7}	-		
60°C ^b	5.20×10^{-6}	2.60×10^{-7}	8.66×10^{-7}	1.92×10^{-7}	1.73×10^{-7}		
70°C ^{<i>b</i>}	1.44×10^{-5}	8.66×10^{-7}	2.26×10^{-6}	2.55×10^{-7}	2.23×10^{-7}		
80°C ^b	7.42×10^{-5}	2.60×10^{-5}	8.66×10^{-6}	2.29×10^{-6}	4.59×10^{-7}		
90°C ^{<i>b</i>}	1.30×10^{-4}	8.66×10^{-5}	5.20×10^{-5}	9.43 × 10 ⁻⁶	$6.87 imes 10^{-7}$		
100°C ^b	$1.58 imes 10^{-4}$	1.01×10^{-4}	1.03×10^{-4}	1.94×10^{-5}	9.69 × 10 ⁻⁶		
^{<i>a</i>} Relative humidity ^{<i>b</i>} Temperature.							