Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

## **Supporting Information For**

## Fluorogenic naked eye "turn-on" sensing of hypochlorous acid by a Zrbased metal-organic framework

Soutick Nandi,<sup>ab</sup> Subhrajyoti Ghosh, <sup>a</sup> Mostakim SK, <sup>a</sup> and Shyam Biswas \*a

<sup>a</sup> Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.

<sup>b</sup> Department of Chemistry, Brainware University, Kolkata, 700125 West Bengal, India.

\* Corresponding author. Tel: 91-3612583309, Fax: 91-3612582349.

E-mail address: sbiswas@iitg.ac.in.

Materials and Characterization Methods. All the required chemicals were purchased from commercial sources and used without purification, except 2-((dimethylthiocarbamoyl)oxy) terephthalic acid (H<sub>2</sub>BDC-DMTCM). Fourier transform infrared (FT-IR) spectra were recorded with a Perkin Elmer Spectrum two FT-IR spectrometer in the range of 440-4000 cm<sup>-</sup> <sup>1</sup> with KBr pellet. The below mentioned indications were employed for the characterization of the absorption bands: medium (m), weak (w), broad (br), very strong (vs), strong (s) and shoulder (sh). X-Ray powder diffraction (XRPD) patterns were collected by Rigaku Smartlab X-ray diffractometer with copper K $\alpha$  ( $\lambda = 1.54$  Å) as the source recorded with a scan rate of 5°/s between 20 (5-50°) with 9 kW power. FE-SEM images were captured with a Zeiss (Zemini) scanning electron microscope. Thermogravimetric analyses (TGA) were collected under air atmosphere at a heating rate of 10 °C min<sup>-1</sup> in a temperature region of 25-800 °C by employing a Netzsch STA-409CD thermal analyzer. Fluorescence emission behavior was recorded by a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer. The excitation wavelength ( $\lambda_{ex}$ ) was 305 nm for all the fluorescence experiments. The nitrogen sorption isotherms were performed employing a Quantachrome Autosorb iQ-MP gas sorption analyzer at -196 °C. Prior to the sorption measurement, degassing of the material was performed at 90 °C for 12 h under dynamic vacuum. A Bruker Avance III 600 spectrometer was utilized for recording <sup>1</sup>H-NMR at 400 MHz. The mass spectrum (in ESI mode) was measured with an Agilent 6520 Q-TOF high-resolution mass spectrometer. Fluorescence lifetime measurements were performed by time correlated single-photon counting (TCSPC) method by an Edinburgh Instrument Life-Spec II instrument. The fluorescence decays were analyzed by reconvolution method using the FAST software provided by Edinburgh Instruments.

Preparation of 2-((dimethylthiocarbamoyl)oxy) terephthalic acid (H<sub>2</sub>BDC-DMTCM). 2-((dimethylthiocarbamoyl)oxy) terephthalic acid (H<sub>2</sub>BDC-DMTCM) was prepared by the hydrolysis of its corresponding dimethyl ester compound (Scheme S1). Dimethyl 2-((dimethylthiocarbamoyl)oxy) terephthalate was prepared by following similar reported procedure, which was adopted for 2,5-bis((dimethylthiocarbamoyl)oxy)terephthalic acid diethyl ester.<sup>1</sup> The hydrolysis of the ester compound was carried out by the following method. In 40 mL of methanol, 1 g (3.5 mmol) of dimethyl 2-((dimethylthiocarbamoyl)oxy) terephthalate was dissolved. Afterward, 14 mL of 1 (N) NaOH was added dropwise. The mixture was kept for 12 h under stirring condition. Then, the solution was filtered and conc. HCl was added to reach pH = 3. Then, the methanol was evaporated and the solution was kept at 4 °C. After 3 h, white precipitate was collected and dried at 60 °C for 12 h in a conventional oven. Yield was 620 mg (2.3 mmol, 65 %). <sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ ):  $\delta = 3.35$  (s, 6H), 7.98-7.96 (d, 1H), 7.89-7.86 (d, 1H), 7.59 (s, 1H) ppm. <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ ):  $\delta =$ 185.98, 165.99, 165.00, 152.87, 134.90, 131.43, 129.01, 126.43, 125.38, 42.86 ppm. ESI-MS (m/z): 268.0396 for  $(M-H)^{-1}$  ion  $(M = mass of H_2BDC-DMTCM ligand)$ . In Figures S1-S3 the NMR and mass spectra of the H<sub>2</sub>BDC-DMTCM ligand are shown.



Dimethyl 2-((dimethylthiocarbamoyl)oxy)terephthalate

2-((dimethylthiocarbamoyl)oxy)terephthalic acid

**Scheme S1.** Scheme for the preparation of 2-((dimethylthiocarbamoyl)oxy) terephthalic acid (H<sub>2</sub>BDC-DMTCM).



**Figure S1.** <sup>1</sup>H NMR spectrum of 2-((dimethylthiocarbamoyl)oxy) terephthalic acid (H<sub>2</sub>BDC-DMTCM) ligand.



**Figure S2.** <sup>13</sup>C NMR spectrum of 2-((dimethylthiocarbamoyl)oxy) terephthalic acid (H<sub>2</sub>BDC-DMTCM) ligand.



**Figure S3.** ESI-MS spectrum of 2-((dimethylthiocarbamoyl)oxy) terephthalic acid (H<sub>2</sub>BDC-DMTCM) ligand.



Figure S4. FE-SEM images of 1'.



Figure S5. EDX spectrum of 1'.



Figure S6. EDX elemental mapping of 1'.



Figure S7. XRPD pattern of the simulated Zr-UiO-66 (black), as-synthesized 1 (red) and thermally activated (blue) 1'.



**Figure S8.** Pawley refinement for the XRPD pattern of as-synthesized **1**. Pink characters and blues lines denote experimental and simulated patterns, respectively. The peak positions and difference plot are shown at the bottom ( $R_{wp} = 6.64\%$ ,  $R_p = 4.39\%$ ).



Figure S9. FT-IR spectra of as-synthesized 1 and thermally activated 1'.



**Figure S10.** TG curves of as-synthesized and activated material measured in the temperature range of 25-700 °C at a heating rate of 5 °C min<sup>-1</sup>.



**Figure S11.** Experimental XRPD patterns of as-synthesized 1 (a), in DMF (b), in  $H_2O$  (c), in methanol (d), in ethanol (e) acetic acid (f) and 1(M) HCl (g).



**Figure S12.**  $N_2$  adsorption (solid black circles) and desorption (solid red circles) isotherms of activated **1'** measured at -196 °C.



**Figure S13**. (a) UV-Vis spectrum and (b) fluorescence spectra (excitation and emission) of **1'** in aqueous medium.



**Figure S14**. Naked eye detectable color change under UV lamp with the inclusion of (i) 20  $\mu$ M (ii) 6  $\mu$ M (iii) 3  $\mu$ M (iv) 0  $\mu$ M (blank) concentration of HOCl in aqueous suspension of **1'**.



**Figure S15.** Change in the fluorescence emission intensity of 1' upon addition of 1 mM HOCl solution (500  $\mu$ L) in presence of 1 mM <sup>1</sup>O<sub>2</sub> solution (500  $\mu$ L).



**Figure S16.** Change in the fluorescence emission intensity of 1' upon addition of 1 mM HOCl solution (500  $\mu$ L) in presence of 1 mM O<sub>2</sub> · solution (500  $\mu$ L).



**Figure S17.** Change in the fluorescence emission intensity of 1' upon addition of 1 mM HOCl solution (500  $\mu$ L) in presence of 1 mM H<sub>2</sub>O<sub>2</sub> solution (500  $\mu$ L).



**Figure S18.** Change in the fluorescence emission intensity of 1' upon addition of 1 mM HOCl solution (500  $\mu$ L) in presence of 1 mM OH solution (500  $\mu$ L).



**Figure S19.** Change in the fluorescence emission intensity of 1' upon addition of 1 mM HOCl solution (500  $\mu$ L) in presence of 1 mM TBHP solution (500  $\mu$ L).



**Figure S20.** Change in the fluorescence emission intensity of 1' upon addition of 1 mM HOCl solution (500  $\mu$ L) in presence of 1 mM 'BuO' solution (500  $\mu$ L).



**Figure S21.** Change in the fluorescence emission intensity of 1' upon addition of 1 mM HOCl solution (500  $\mu$ L) in presence of 1 mM NO<sup>•</sup> solution (500  $\mu$ L).



**Figure S22.** Change in the fluorescence emission intensity of 1' upon addition of 1 mM HOCl solution (500  $\mu$ L) in presence of 1 mM ONOO<sup>-</sup> solution (500  $\mu$ L).



**Figure S23.** XRPD patterns of **1** in different forms: as-synthesized (a), thermally activated (b) and after HOCl sensing (c).



Figur

**e S24.** ESI-MS spectrum of HOCl treated H<sub>2</sub>BDC-DMTCM in MeOH. The spectrum shows m/z (negative ion mode) peaks at 268.0377 and 181.0191, which correspond to  $(M-H)^{-1}$  ion of H<sub>2</sub>BDC-DMTCM and HOCl mediated product (i.e. H<sub>2</sub>BDC-OH).



**Figure S25.** <sup>1</sup>H NMR spectrum of (a) H<sub>2</sub>BDC-DMTCM ligand and (b) HOCl-treated H<sub>2</sub>BDC-DMTCM ligand in DMSO- $d_6$ . New proton signals at 7.88 ppm and 7.45-7.42 ppm signifies the formation of H<sub>2</sub>BDC-OH after treatment with HOCl solution.



**Figure S26.** <sup>1</sup>H NMR spectrum of 2-hydroxy terephthalic acid (H<sub>2</sub>BDC-OH) ligand.



**Figure S27.** Relative fluorescence response of 1',  $H_2BDC$ -DMTCM and unfunctionalized Zr-UiO-66 towards 1 mM HOCl (500 µL) in aqueous medium.



Figure S28. Recyclability test for the fluorescence turn-on response of 1' towards HOCl solution.



**Figure S29.** Lifetime decay profiles of aqueous suspension of 1' in absence and presence of HOCl solution ( $\lambda_{ex} = 290$  nm, monitored at 425 nm).

**Table S1.** Comparison of the sensing performance of various sensors of HOCI.

| Sl.<br>No. | Sensor                         | Type of<br>Material | Sensing<br>Medium                                                       | Mode of Detection           | Detection<br>Limit     | Response<br>Time | Ref.         |
|------------|--------------------------------|---------------------|-------------------------------------------------------------------------|-----------------------------|------------------------|------------------|--------------|
| 1          | Zr-UiO-66-<br>DMTCM)) (1)      | MOF                 | Water                                                                   | Fluorescence "Turn-<br>on"  | 1.22 μM                | Second           | this<br>work |
| 2          | UiO-68-ol                      | MOF                 | PBS buffer                                                              | Fluorescence "Turn-<br>off" | 10 <sup>-7</sup> M     | Second           | 2            |
| 3          | Eu-BDC-NH <sub>2</sub><br>/DPA | MOF                 | -                                                                       | Ratiometric                 | 37 nM                  | Second           | 3            |
| 4          | Flu-1                          | Organic<br>molecule | DMSO–<br>H <sub>2</sub> O                                               | Fluorescence "Turn-<br>on"  | -                      | Second           | 4            |
| 5          | Naph-1 and<br>Naph-2           | Organic<br>molecule | PBS buffer                                                              | Fluorescence "Turn-<br>on"  | 37 nM<br>and 8.2<br>nM | 1 min            | 5            |
| 6          | rTP-HOCl 1                     | Organic<br>molecule | PBS buffer                                                              | Ratiometric                 | 34.8 nM                | Second           | 6            |
| 7          | HySOx                          | Organic<br>molecule | Sodium<br>phosphate<br>buffer<br>containing<br>20% DMF                  | Fluorescence "Turn-<br>on"  | -                      | Second           | 7            |
| 8          | Compound 1                     | Organic<br>molecule | 0.1M<br>potassium<br>phosphate<br>buffer<br>pH<br>9.0/DMF<br>(v/v, 1:4) | Fluorescence "Turn-<br>off" | -                      | 3 min            | 8            |
| 9          | FBS                            | Organic<br>molecule | KH <sub>2</sub> PO4<br>buffer (50<br>mM, pH<br>7.4)                     | Fluorescence "Turn-<br>on"  | 0.2 μΜ                 | -                | 9            |
| 10         | TP-HOCl 1                      | Organic<br>molecule | PBS buffer                                                              | Fluorescence "Turn-<br>on"  | 16.6 nM                | Second           | 10           |
| 11         | РМОРР                          | Organic             | PBS<br>solution                                                         | Fluorescence "Turn-         | 0.8 µM                 | -                | 11           |

|    |                                                               | molecule            | (pH=7.4,<br>0.01 M)                                   | off'                                       |             |         |    |
|----|---------------------------------------------------------------|---------------------|-------------------------------------------------------|--------------------------------------------|-------------|---------|----|
| 12 | L1                                                            | Organic<br>molecule | PBS buffer                                            | Fluorescence "Turn-<br>off"                | 0.674<br>μM | 2.5 min | 12 |
| 13 | [Ir(ppy) <sub>2</sub> (L <sub>1</sub> )](PF <sub>6</sub> )(1) | Metal<br>complexes  | DMF-<br>HEPES (50<br>mM, pH =<br>7.2, v/v = 4<br>: 1) | Fluorescence "Turn-<br>on"                 | 1 ppm       | -       | 13 |
| 14 | PDA@ERGO/GC                                                   | Electrode           | Water                                                 | Electrochemical                            | 44 nM       | -       | 14 |
| 15 | BDD                                                           | Electrode           | Water                                                 | Electrochemical                            | 8.3 µM      | -       | 15 |
| 16 | AgCl/Ag <sub>2</sub> O films                                  | Electrode           | Water                                                 | Electrochemical                            | 2 ppm       | 60 s    | 16 |
| 17 | CuO-<br>NPs@MWCNT                                             | Nanocomposite       | PBS                                                   | Electrochemical                            | 0.7 μΜ      | -       | 17 |
| 18 | Poly MnTAPP-<br>nano Au GCE                                   | Electrode           | NaOH/H <sub>2</sub> O                                 | Electrochemical                            | 24 µM       | -       | 18 |
| 19 | <i>o</i> -tolidinium<br>dichloride                            | Organic<br>molecule | Buffer<br>solution                                    | Spectrophotometric                         | 0.08 ppm    | -       | 19 |
| 20 | Acetylcholine<br>esterase                                     | Enzyme              | Water                                                 | Potentiometric                             | 0.01 mM     | 20 min  | 20 |
| 21 | Styrene                                                       | Organic<br>molecule | Water                                                 | Gas<br>chromatography/mass<br>spectrometry | 0.1 μΜ      | -       | 21 |
| 22 | Poly(luminol)<br>reagent film                                 | Thin film           | Water                                                 | Chemiluminescence                          | 0.5 μΜ      | _       | 22 |
| 23 | Glassy carbon electrode                                       | Electrode           | Soil                                                  | Chronoamperometric                         | -           | 2 s     | 23 |

**Table S2.** Unit cell parameters of the as-synthesized Zr-UiO-66-DMTCM MOF (1'). The obtained values are compared with the previously reported Zr-UiO-66 MOFs.

| Compound<br>Name                     | Zr-UiO-66-<br>DMTCM<br>MOF (1') | Zr-UiO-66<br>MOF<br>(reported) <sup>24</sup> | Zr-UiO-66-<br>(OCOCH <sub>3</sub> ) <sub>2</sub><br>MOF<br>(reported) <sup>25</sup> | Zr-UiO-66-<br>NH-CH <sub>2</sub> -Py<br>MOF<br>(reported) <sup>26</sup> | Zr-UiO-66-1-<br>(aminomethyl)<br>naphthalen-2-<br>ol<br>(reported) <sup>27</sup> |
|--------------------------------------|---------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Crystal<br>System                    | cubic                           | cubic                                        | cubic                                                                               | cubic                                                                   | cubic                                                                            |
| a = b = c (Å)                        | 20.8029 (7)                     | 20.7004 (2)                                  | 20.840(7)                                                                           | 20.755(3)                                                               | 20.786(3)                                                                        |
| $\alpha = \beta = \gamma (^{\circ})$ | 90                              | 90                                           | 90                                                                                  | 90                                                                      | 90                                                                               |
| V (Å <sup>3</sup> )                  | 9002.5 (5)                      | 8870.3(2)                                    | 9051.7(5)                                                                           | 8940.3(21)                                                              | 8981.1(19)                                                                       |

Table S3. Calculation of detection limit for HOCl detection by 1'.

| Number | Fluorescence Intensities at | Standard               | Slope (k)            | Detection             |
|--------|-----------------------------|------------------------|----------------------|-----------------------|
| of Run | 425 nm before addition of   | Deviation ( $\sigma$ ) | (m) M-1)             | Limit $(3\sigma/k)$   |
| (n)    | HOCI                        |                        | (mm <sup>1</sup> )   | (mM)                  |
|        |                             |                        |                      |                       |
| 1      | 181704.19511                | 894.18                 | $2.20 \times 10^{6}$ | $1.22 \times 10^{-3}$ |
| 2      | 182786.60313                |                        |                      | (1.22 µM)             |
|        |                             |                        |                      |                       |
| 3      | 184394.7706                 |                        |                      |                       |
| 4      | 183999.40793                |                        |                      |                       |
|        | 100.400.007.00              |                        |                      |                       |
| 5      | 182430.22763                |                        |                      |                       |
| 6      | 182813.79891                |                        |                      |                       |
| 7      | 192277 7190                 |                        |                      |                       |
| /      | 1822/7.7180                 |                        |                      |                       |
| 8      | 181902.77905                |                        |                      |                       |
|        |                             |                        |                      |                       |

**Table S4.** Fluorescence lifetimes of aqueous suspension of 1' before and after the addition of HOCl solution ( $\lambda_{ex} = 290$  nm, pulsed diode laser).

| Volume of 1 mM | a <sub>1</sub> | a <sub>2</sub> | $\tau_1$ (ns) | $\tau_2$ (ns) | <\mathcal{\tau} >* (ns) | $\chi^2$ |
|----------------|----------------|----------------|---------------|---------------|-------------------------|----------|
| HOCl solution  |                |                |               |               |                         |          |
| added (µL)     |                |                |               |               |                         |          |
|                |                |                |               |               |                         |          |
| 0              | 0.46           | 0.54           | 0.55          | 8.43          | 4.80                    | 1.01     |
|                |                |                |               |               |                         |          |
| 500            | 0.04           | 0.96           | 1.07          | 9.04          | 8.72                    | 1.02     |
|                |                |                |               |               |                         |          |

\*  $<\tau> = a_1\tau_1 + a_2\tau_2$ 

## **References:**

- 1. P.-T. Skowron, M. Dumartin, E. Jeamet, F. Perret, C. Gourlaouen, A. Baudouin, B. Fenet, J.-V. Naubron, F.Fotiadu, L. Vial and J. Leclaire, *J. Org. Chem.*, 2016, **81**, 654-661.
- 2. Y.-A. Li, S. Yang, Q.-Y. Li, J.-P. Ma, S. Zhang and Y.-B. Dong, *Inorg. Chem.2017, 56*, 2017, 56, 13241-13248.
- 3. Y.-Q. Sun, Y. Cheng and X.-B. Yin, Anal. Chem., 2021, doi.org/10.1021/acs.analchem.1020c05040.
- 4. X. Cheng, H. Jia, T. Long, J. Feng, J. Qin and Z. Li, *Chem. Commun.*, 2011, **47**, 11978–11980.
- 5. Y. Jiang, G. Zheng, Q. Duan, L. Yang, J. Zhang, H. Zhang, J. He, H. Sun and D. Ho, *Chem. Commun.*, 2018, **54**, 7967-7970.
- 6. Y. W. Jun, S. Sarkar, S. Singha, Y. J. Reo, H. R. Kim, J.-J. Kim, Y.-T. Chang and K. H. Ahn, *Chem. Commun.*, 2017, **53**, 10800-10803.
- 7. S. Kenmoku, Y. Urano, H. Kojima and T. Nagano, *J. Am. Chem. Soc.*, 2007, **129**, 7313-7318.
- 8. J. Shi, Q. Li, X. Zhang, M. Peng, J. Qin and Z. Li, Sens. Actuators, B, 2010, 145, 583–587.
- 9. Q. Xu, K.-A. Lee, S. Lee, K. M. Lee, W.-J. Lee and J. Yoon, *J. Am. Chem. Soc.*, 2013, **135**, 9944-9949.
- 10. L. Yuan, L. Wang, B. K. Agrawalla, S.-J. Park, H. Zhu, B. Sivaraman, J. Peng, Q.-H. Xu and Y.-T. Chang, *J. Am. Chem. Soc.*, 2015, **137**, 5930–5938.
- 11. W. Zhang, C. Guo, L. Liu, J. Qin and C. Yang, Org. Biomol. Chem., 2011, 9, 5560– 5563.
- 12. B. Zhang, X. Yang, R. Zhang, Y. Liu, X. Ren, M. Xian, Y. Ye and Y. Zhao, *Anal. Chem.*, 2017, **89**, 10384-10390.
- 13. N. Zhao, Y.-H. Wu, R.-M. Wang, L.-X. Shi and Z.-N. Chen, *Analyst*, 136, **2011**, 2277–2282.
- 14. D. R. Kumar, S. Kesavan, T. T. Nguyen, J. Hwang, C. Lamiel and J.-J. Shim, *Sensors and Actuators B: Chemical*, 2017, **240**, 818-828.
- 15. M. Murata, T. A. Ivandini, M. Shibata, S. Nomura, A. Fujishima and Y. Einaga, J. *Electroanal. Chem.*, 2008, **612**, 29-36.
- 16. M. Jović, F. Cortés-Salazar, A. Lesch, V. Amstutz, H. Bi and H. H. Girault, J. *Electroanal. Chem.*, 2015, **756**, 171-178.
- 17. J. Muñoz, F. Céspedes and M. Baeza, *Microchem. J.*, 2015, **122**, 189-196.
- 18. S. Thiagarajan, Z.-Y. Wu and S.-M. Chen, J. Electroanal. Chem., 2011, 661, 322-328.
- 19. D. J. Leggett, N. H. Chen and D. S. Mahadevappa, *Analyst*, 1982, **107**, 433-441.

- 20. A. P. Soldatkin, D. V. Gorchkov, C. Martelet and N. J. Renault, Sens. Actuators B, 1997, 43, 99-104.
- 21. K. Wakigawa, A. Gohda, S. Fukushima, T. Mori, T. Niidome and Y. Katayama, *Talanta*, 2013, **103**, 81-85.
- 22. M. Szili, I. Kasik, V. Matejec, G. Nagy and B. Kovacs, *Sens. Actuators B*, 2014, **192**, 92-98.
- 23. L. Kiss, B. Kovacs and G. Nagy, J. Solid State Electrochem., 2015, 19, 261-267.
- 24. J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, J. Am. Chem. Soc., 2008, **130**, 13850-13851.
- 25. S. Nandi, M. SK and S. Biswas, *Dalton Trans*, 2020, 49, 2830-2834.
- A. Das, N. Anbu, M. SK, A. Dhakshinamoorthy and S. Biswas, *Dalton Trans.*, 2019, 48, 17371-17380.
- 27. A. Das, N. Anbu, M. SK, A. Dhakshinamoorthy and S. Biswas, *ChemCatChem*, 2020, **12**, 1789-1798.