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Materials and Characterization Methods. All the required chemicals were purchased from 
commercial sources and used without purification, except 2-((dimethylthiocarbamoyl)oxy) 
terephthalic acid (H2BDC-DMTCM). Fourier transform infrared (FT-IR) spectra were 
recorded with a Perkin Elmer Spectrum two FT-IR spectrometer in the range of 440-4000 cm-

1 with KBr pellet. The below mentioned indications were employed for the characterization of 
the absorption bands: medium (m), weak (w), broad (br), very strong (vs), strong (s) and 
shoulder (sh). X-Ray powder diffraction (XRPD) patterns were collected by Rigaku Smartlab 
X-ray diffractometer with copper Kα (λ = 1.54 Å) as the source recorded with a scan rate of 
5°/s between 2θ (5-50°) with 9 kW power. FE-SEM images were captured with a Zeiss 
(Zemini) scanning electron microscope. Thermogravimetric analyses (TGA) were collected 
under air atmosphere at a heating rate of 10 °C min−1 in a temperature region of 25-800 °C by 
employing a Netzsch STA-409CD thermal analyzer. Fluorescence emission behavior was 
recorded by a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer. The excitation 
wavelength (λex) was 305 nm for all the fluorescence experiments. The nitrogen sorption 
isotherms were performed employing a Quantachrome Autosorb iQ-MP gas sorption analyzer 
at -196 °C. Prior to the sorption measurement, degassing of the material was performed at 90 
°C for 12 h under dynamic vacuum. A Bruker Avance III 600 spectrometer was utilized for 
recording 1H-NMR at 400 MHz. The mass spectrum (in ESI mode) was measured with an 
Agilent 6520 Q-TOF high-resolution mass spectrometer. Fluorescence lifetime measurements 
were performed by time correlated single-photon counting (TCSPC) method by an Edinburgh 
Instrument Life-Spec II instrument. The fluorescence decays were analyzed by reconvolution 
method using the FAST software provided by Edinburgh Instruments. 

Preparation of 2-((dimethylthiocarbamoyl)oxy) terephthalic acid (H2BDC-DMTCM). 2-
((dimethylthiocarbamoyl)oxy) terephthalic acid (H2BDC-DMTCM) was prepared by the 
hydrolysis of its corresponding dimethyl ester compound (Scheme S1). Dimethyl 2-
((dimethylthiocarbamoyl)oxy) terephthalate was prepared by following similar reported 
procedure, which was adopted for 2,5-bis((dimethylthiocarbamoyl)oxy)terephthalic acid 
diethyl ester.1 The hydrolysis of the ester compound was carried out by the following method. 
In 40 mL of methanol, 1 g (3.5 mmol) of dimethyl 2-((dimethylthiocarbamoyl)oxy) 
terephthalate was dissolved. Afterward, 14 mL of 1 (N) NaOH was added dropwise. The 
mixture was kept for 12 h under stirring condition. Then, the solution was filtered and conc. 
HCl was added to reach pH = 3. Then, the methanol was evaporated and the solution was kept 
at 4 °C. After 3 h, white precipitate was collected and dried at 60 °C for 12 h in a conventional 
oven. Yield was 620 mg (2.3 mmol, 65 %). 1H-NMR (400 MHz, DMSO-d6): δ = 3.35 (s, 6H), 
7.98-7.96 (d, 1H), 7.89-7.86 (d, 1H), 7.59 (s, 1H) ppm. 13C NMR (100 MHz, DMSO-d6):  δ = 
185.98, 165.99, 165.00, 152.87, 134.90, 131.43, 129.01, 126.43, 125.38, 42.86 ppm. ESI-MS 
(m/z): 268.0396 for (M-H)- ion (M = mass of H2BDC-DMTCM ligand). In Figures S1-S3 the 
NMR and mass spectra of the H2BDC-DMTCM ligand are shown.
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Scheme S1. Scheme for the preparation of 2-((dimethylthiocarbamoyl)oxy) terephthalic acid 
(H2BDC-DMTCM).

Figure S1. 1H NMR spectrum of 2-((dimethylthiocarbamoyl)oxy) terephthalic acid (H2BDC-
DMTCM) ligand.
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Figure S2. 13C NMR spectrum of 2-((dimethylthiocarbamoyl)oxy) terephthalic acid 
(H2BDC-DMTCM) ligand.

Figure S3. ESI-MS spectrum of 2-((dimethylthiocarbamoyl)oxy) terephthalic acid (H2BDC-
DMTCM) ligand.
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Figure S4. FE-SEM images of 1′.

Figure S5. EDX spectrum of 1'.
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Figure S6. EDX elemental mapping of 1'.

Figure S7. XRPD pattern of the simulated Zr-UiO-66 (black), as-synthesized 1 (red) and 
thermally activated (blue) 1'.
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Figure S8. Pawley refinement for the XRPD pattern of as-synthesized 1. Pink characters and 
blues lines denote experimental and simulated patterns, respectively. The peak positions and 
difference plot are shown at the bottom (Rwp = 6.64%, Rp = 4.39%).

Figure S9. FT-IR spectra of as-synthesized 1 and thermally activated 1′.
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Figure S10. TG curves of as-synthesized and activated material measured in the temperature 
range of 25-700 °C at a heating rate of 5 ºC min−1. 

Figure S11. Experimental XRPD patterns of as-synthesized 1 (a), in DMF (b), in H2O (c), in 
methanol (d), in ethanol (e) acetic acid (f) and 1(M) HCl (g).
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Figure S12. N2 adsorption (solid black circles) and desorption (solid red circles) isotherms of 
activated 1' measured at -196 °C.

Figure S13. (a) UV-Vis spectrum and (b) fluorescence spectra (excitation and emission) of 1' 
in aqueous medium.
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Figure S14. Naked eye detectable color change under UV lamp with the inclusion of (i) 20 µM 
(ii) 6 µM (iii) 3 µM (iv) 0 µM (blank) concentration of HOCl in aqueous suspension of 1'.

Figure S15. Change in the fluorescence emission intensity of 1′ upon addition of 1 mM HOCl 
solution (500 µL) in presence of 1 mM 1O2 solution (500 µL).
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Figure S16. Change in the fluorescence emission intensity of 1′ upon addition of 1 mM HOCl 
solution (500 µL) in presence of 1 mM O2

 •¯solution (500 µL).

Figure S17. Change in the fluorescence emission intensity of 1′ upon addition of 1 mM HOCl 
solution (500 µL) in presence of 1 mM H2O2 solution (500 µL).
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Figure S18. Change in the fluorescence emission intensity of 1′ upon addition of 1 mM HOCl 
solution (500 µL) in presence of 1 mM OH• solution (500 µL).

Figure S19. Change in the fluorescence emission intensity of 1′ upon addition of 1 mM HOCl 
solution (500 µL) in presence of 1 mM TBHP solution (500 µL).
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Figure S20. Change in the fluorescence emission intensity of 1′ upon addition of 1 mM HOCl 
solution (500 µL) in presence of 1 mM tBuO• solution (500 µL).

Figure S21. Change in the fluorescence emission intensity of 1′ upon addition of 1 mM HOCl 
solution (500 µL) in presence of 1 mM NO• solution (500 µL).
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Figure S22. Change in the fluorescence emission intensity of 1′ upon addition of 1 mM HOCl 
solution (500 µL) in presence of 1 mM ONOO¯ solution (500 µL).

Figure S23. XRPD patterns of 1 in different forms: as-synthesized (a), thermally activated 
(b) and after HOCl sensing (c).
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Figur
e S24. ESI-MS spectrum of HOCl treated H2BDC-DMTCM in MeOH. The spectrum shows 
m/z (negative ion mode) peaks at 268.0377 and 181.0191, which correspond to (M-H)-ion of 
H2BDC-DMTCM and HOCl mediated product (i.e. H2BDC-OH).

Figure S25. 1H NMR spectrum of (a) H2BDC-DMTCM ligand and (b) HOCl-treated H2BDC-
DMTCM ligand in DMSO-d6. New proton signals at 7.88 ppm and 7.45-7.42 ppm signifies the 
formation of H2BDC-OH after treatment with HOCl solution.
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Figure S26. 1H NMR spectrum spectrum of 2-hydroxy terephthalic acid (H2BDC-OH) 
ligand.

Figure S27. Relative fluorescence response of 1′, H2BDC-DMTCM and unfunctionalized Zr-
UiO-66 towards 1 mM HOCl (500 µL) in aqueous medium.
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Figure S28. Recyclability test for the fluorescence turn-on response of 1′ towards HOCl 
solution.

Figure S29. Lifetime decay profiles of aqueous suspension of 1′ in absence and presence of 
HOCl solution (λex = 290 nm, monitored at 425 nm).
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Table S1. Comparison of the sensing performance of various sensors of HOCl.

Sl. 
No.

Sensor Type of 
Material

Sensing 
Medium

Mode of Detection Detection 
Limit

Response 
Time

Ref.

1 Zr-UiO-66-
DMTCM)) (1)

MOF Water Fluorescence “Turn-
on”

1.22 µM Second this 
work

2 UiO-68-ol MOF PBS buffer  Fluorescence  “Turn-
off”

10-7 M Second 2

3 Eu-BDC-NH2

/DPA

MOF - Ratiometric 37 nM Second 3

4 Flu-1 Organic 
molecule

DMSO–
H2O

Fluorescence “Turn-
on”

- Second 4

5 Naph-1 and 
Naph-2

Organic 
molecule

PBS buffer Fluorescence “Turn-
on”

37 nM 
and 8.2 
nM

1 min 5

6 rTP-HOCl 1 Organic 
molecule

PBS buffer Ratiometric 34.8 nM Second 6

7 HySOx Organic 
molecule

Sodium 
phosphate 

buffer 
containing 
20% DMF

Fluorescence “Turn-
on”

- Second 7

8 Compound 1 Organic 
molecule

0.1M 
potassium 
phosphate 

buffer

pH 
9.0/DMF 
(v/v, 1:4)

Fluorescence “Turn-
off”

- 3 min 8

9 FBS Organic 
molecule

KH2PO4 
buffer (50 
mM, pH 

7.4)

Fluorescence “Turn-
on”

0.2 µM - 9

10 TP-HOCl 1 Organic 
molecule

PBS buffer Fluorescence “Turn-
on”

16.6 nM Second 10

11 PMOPP Organic PBS 
solution 

Fluorescence “Turn- 0.8 µM - 11
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molecule (pH=7.4, 
0.01 M)

off’

12 L1 Organic 
molecule

PBS buffer Fluorescence “Turn-
off”

0.674 
µM

2.5 min 12

13 [Ir(ppy)2(L1)](PF6

)(1)

Metal 
complexes

DMF–
HEPES (50 
mM, pH = 
7.2, v/v = 4 

: 1)

Fluorescence “Turn-
on”

1 ppm - 13

14 PDA@ERGO/GC Electrode Water Electrochemical 44 nM - 14

15 BDD Electrode Water Electrochemical 8.3 µM - 15

16 AgCl/Ag2O films Electrode Water Electrochemical 2 ppm      60 s 16

17 CuO-
NPs@MWCNT

Nanocomposite PBS Electrochemical 0.7 µM - 17

18 Poly MnTAPP-
nano Au GCE

Electrode NaOH/H2O Electrochemical 24 µM - 18

19 o-tolidinium 
dichloride

Organic 
molecule

Buffer 
solution

Spectrophotometric 0.08 ppm - 19

20 Acetylcholine 
esterase

Enzyme Water Potentiometric 0.01 mM 20 min 20

21 Styrene Organic 
molecule

Water Gas 
chromatography/mass 
spectrometry 

0.1 µM - 21

22 Poly(luminol) 
reagent film

Thin film Water Chemiluminescence 0.5 µM - 22

23 Glassy carbon 
electrode

Electrode Soil Chronoamperometric - 2 s 23

Table S2. Unit cell parameters of the as-synthesized Zr-UiO-66-DMTCM MOF (1′). The 
obtained values are compared with the previously reported Zr-UiO-66 MOFs.
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Compound 
Name

Zr-UiO-66-
DMTCM 
MOF (1′)

Zr-UiO-66 
MOF
(reported)24

Zr-UiO-66-
(OCOCH3)2 
MOF
(reported)25

Zr-UiO-66-
NH-CH2-Py 
MOF
(reported)26

Zr-UiO-66-1-
(aminomethyl) 
naphthalen-2-
ol
(reported)27

Crystal 
System

cubic cubic cubic cubic cubic

a = b = c (Å) 20.8029 (7) 20.7004 (2) 20.840(7) 20.755(3) 20.786(3)

α = β= γ (°) 90 90 90 90 90

V (Å3) 9002.5 (5) 8870.3(2) 9051.7(5) 8940.3(21) 8981.1(19)

Table S3. Calculation of detection limit for HOCl detection by 1′.

Number 
of Run 
(n)

Fluorescence Intensities at 
425 nm before addition of 
HOCl

Standard 
Deviation ( )𝜎

Slope (k)

(mM-1)

Detection 
Limit (3σ/k)

(mM)

1 181704.19511

2 182786.60313

3 184394.7706

4 183999.40793

5 182430.22763

6 182813.79891

7 182277.7180

8 181902.77905

894.18 2.20 × 106 1.22 × 10-3

(1.22 µM)

Table S4. Fluorescence lifetimes of aqueous suspension of 1′ before and after the addition of 
HOCl solution (λex = 290 nm, pulsed diode laser).
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Volume of 1 mM 
HOCl solution 
added (µL)

a1 a2 τ1 (ns) τ2 (ns) <τ>* (ns) χ2

0 0.46 0.54 0.55 8.43 4.80 1.01

500 0.04 0.96 1.07 9.04 8.72 1.02

* <τ> = a1τ1 + a2τ2
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