Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary File

Quantitative activity-activity relationship (QAAR) driven design to develop hydroxamate derivatives of pentanoic acids as selective HDAC8 inhibitors: Synthesis, biological evaluation and binding mode of interaction studies

Sk. Abdul Amin^a, Prakruti Trivedi^b, Nilanjan Adhikari^a, Routholla Ganesh^b, Dhanya Vijayasarathi^b, Sanjib Das^a, Balaram Ghosh^{b, *}, Tarun Jha^{a,*}

 ^aNatural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
 ^bEpigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India.

*Corresponding author: <u>balaram@hyderabad.bits-pilani.ac.in; tjupharm@yahoo.com</u>.

Supplementary Figure S1. ¹H NMR of 7a

Supplementary Figure S4. ¹H NMR of 7b

Supplementary Figure S5. ¹³C NMR of 7b

Supplementary Figure S6. LC/MS of 7b

Supplementary Figure S7. ¹H NMR of 7c

Supplementary Figure S9. LC/MS of 7c

Supplementary Figure S10. ¹H NMR of 7d

Supplementary Figure S12. LC/MS of 7d

Supplementary Figure S13. ¹H NMR of 7e

Supplementary Figure S15. LC/MS of 7e

Supplementary Figure S16. ¹H NMR of 7f

Supplementary Figure S17. ¹³C NMR of 7f

Supplementary Figure S18. LC/MS of 7f

Supplementary Figure S19. ¹H NMR of 7g

Supplementary Figure S21. LC/MS of 7g

Supplementary Figure S22. ¹H NMR of 7h

Supplementary Figure S25. ¹H NMR of 7i

Supplementary Figure S26. ¹³C NMR of 7i

Supplementary Figure S28. ¹H NMR of 7j

Supplementary Figure S31. ¹H NMR of 7k

Supplementary Figure S34. ¹H NMR of 71

Supplementary Figure S35. ¹³C NMR of 71

Figure S37. Dose response curve of 7d, 7e, 7f, 7h and 7i on (A) B16F10, (B) A549 and (C) Jurkat E6.1 cell lines. These compounds were tested in 10 different doses and incubated for 72 hours. Cell viability was measured using MTT reagent. Data represents mean \pm SD (n=3).

Comp ^a	Smiles	IC ₅₀	SEL ^b	Set	
		HDAC8	HDAC3		
A1	N(C(=O)c1cc(cc(c1)N=[N+]=[N-])CN=[N+]=[N-])c1ccc(c2onc(C(=O)NCCCCCCC(=O)NO)c2)cc1	651	45	0	Train
A2	C(CCCCC(=O)NO)NC(=O)c1noc(c1)c1ccc(cc1)N=[N +]=[N-]	707	73	0	Test
A3	C(CCCCCC(=O)NO)C(=O)Nc1cnn(c1)Cc1ccccc1	76	44	0	Test
A4	C(CCCCCC(=O)NO)C(=O)Nc1cnn(c1)Cc1ccc(cc1)[N+] (=O)[O-]	82	59	0	Train
A5	C(CCCCCC(=O)NO)C(=O)Nc1cnn(c1)Cc1ccc(cc1)N=[N+]=[N-]	28	22	0	Train
A6	C(CCCCCC(=O)NO)C(=O)Nc1cnn(c1)Cc1ccc(cc1)NC(=O)OC(C)(C)C	147	191	1	Train
A7	C(CCCCCC(=O)NO)C(=O)Nc1cnn(c1)Cc1ccc(cc1)NC(=O)c1cc(cc(c1)N=[N+]=[N-])CN=[N+]=[N-]	487	432	0	Test
A8	C(CCCCCC(=O)NO)C(=O)Nc1cnn(c1)Cc1cc(cc(c1)N=[N+]=[N-])CN=[N+]=[N-]	17	128	1	Train
A9	C(=O)(c1ccc(cc1)CN(C(=O)Nc1ccccc1)CCCC)NO	954	6,680	1	Train
A10	clcc(ccc1NC(=O)CCCCCCC(=O)NO)clcnnn1Cc1ccc(c c1)F	2,010	16	0	Test
A11	clcc(ccc1NC(=O)CCCCCCC(=O)NO)clcnnnlclccccc1	518	12	0	Train
A12	clcc(ccclNC(=O)CCCCCC(=O)NO)clcnnn1CC(O)clc ccc(cl)Br	737	15	0	Test
A13	clc(cccc1NC(=O)CCCCCCC(=O)NO)clcnnn1Cc1ccccc 1	433	4.5	0	Train
A14	clc(cccclNC(=O)CCCCCC(=O)NO)clcnnn1Cclccc(c c1)F	529	6	0	Test
A15	clc(cccc1NC(=O)CCCCCCC(=O)NO)clcnnn1c1ccccc1	942	8	0	Train
A16	clc(cccclNC(=O)CCCCCC(=O)NO)clcnnn1CC(clccc c(cl)Br)O	406	4.2	0	Train
A17	c1(onc(c1)COCCCC(=O)NO)c1ccccc1	3,320	12.9	0	Test
A18	c1(onc(c1)C(=O)NCCCCC(=O)NO)c1ccccc1	3,580	158	0	Train
A19	c1(onc(c1)C(=O)NCCCCC(=O)NO)c1cccc(c1)NC(=O)O C(C)(C)C	5,810	84	0	Train
A20	c1(onc(c1)C(=O)NCCCCCC(=O)NO)c1cccc(c1)N	938	4	0	Train
A21	c1(onc(c1)C(=O)NCCCCC(=O)NO)c1cccc(c1)N	3,430	144	0	Test
A22	c1(onc(c1)C(=O)NCCCCCCC(=O)NO)c1ccc(cc1)NC(= O)OC(C)(C)C	6,851	0	0	Train
A23	c1(onc(c1)C(=O)NCCCCC(=O)NO)c1ccc(cc1)NC(=O)O C(C)(C)C	3,650	115	0	Train
A24	c1(onc(c1)C(=O)NCCCCCC(=O)NO)c1ccc(cc1)N	3,458	10	0	Train
A25	c1(onc(c1)C(=O)NCCCCC(=O)NO)c1ccc(cc1)N	2,830	66	0	Train
A26	c1(onc(c1)C(=O)NCCCCCCC(=O)NO)c1ccc(cc1)NC(= O)C	4,900	18	0	Train
A27	c1c(ccc(c1)NC(=O)CCCCCCC(=O)NO)OCc1cc(cc(c1)N) =[N+]=[N-])CN=[N+]=[N-]	7,340	1,480	0	Train
A28	c1ccccc1NC(=O)CCCCCC(=O)NO	2,290	17	0	Train
A29	c1cc(ccc1C(=O)/C(=C/C(C)/C=C/C(=O)NO)/C)N(C)C	1,380	2	0	Test
A30	clc(cc(ccl)NC(=O)CCCCCC(=O)NO)clnnn(cl)clccc(12,000	18	0	Train

 Table S1. List of molecules considered for the modeling study

	cc1)F				
A31	c1c(cc(cc1)NC(=O)CCCCCC(=O)NO)c1nnn(c1)c1ccc(cc1)C(F)(F)F	5,220	3	0	Train
A32	clc(cc(cc1)NC(=O)CCCCCCC(=O)NO)c1nnn(c1)clcc(c c(c1)CO)CO	1,320	3	0	Train
A33	c1c(cc(cc1)NC(=O)CCCCCCC(=O)NO)c1nnn(c1)C1CC CCC1	1,190	4	0	Train
A34	clc(cc(cc1)NC(=O)CCCCCCC(=O)NO)n1nnc(c1)clcccc c1	4,180	3	0	Train
A35	c1c(cc(cc1)NC(=O)CCCCCC(=O)NO)n1nnc(c1)C1CC CCC1	2,750	5	0	Train
A36	clcc(ccc1NC(=O)CCCCCCC(=O)NO)clcn(nn1)Cclccc(cc1)F	797	14	0	Train
A37	clcc(ccc1NC(=O)CCCCCCC(=O)NO)clcn(nn1)clccccc 1	1,970	8	0	Train
A38	clcc(ccc1NC(=O)CCCCCC(=O)NO)clcn(nn1)CC(O)c lcccc(c1)Br	3,130	25	0	Train
A39	clc(cccc1NC(=O)CCCCCCC(=O)NO)clcn(nn1)Cclcccc cl	1,990	8	0	Train
A40	clc(cccc1NC(=O)CCCCCC(=O)NO)clcn(nn1)Cclccc(cc1)F	552	4	0	Train
A41	clc(cccc1NC(=O)CCCCCCC(=O)NO)clcn(nn1)clccccc 1	2,780	7	0	Test
A42	c1c(cccc1NC(=O)CCCCCCC(=O)NO)c1cn(nn1)CC(O)c 1cccc(c1)Br	440	3	0	Test
A43	c1cc(ccc1NC(=O)CCCCCCC(=O)NO)c1cnnn1Cc1ccccc 1	790	9.7	0	Train
A44	C(=O)(CCCCCC[NH2+]Cc1ccccc1)NO	1,800	430	0	Train
A45	C(=O)(CCCC[NH2+]Cc1ccccc1)NO	10,000	22,000	1	Train
A46	C(=O)(CCCCCC[NH+](Cc1ccccc1)Cc1ccccc1)NO	4,000	1,100	0	Train
A47	C(=O)(CCCC[NH+](Cc1ccccc1)Cc1ccccc1)NO	1,900	1,400	0	Train
A48	C(=O)(CC[NH+](Cc1ccccc1)Cc1ccccc1)NO	1,400	52,000	1	Train
A49	C(=O)(CCCCCC[NH+]1Cc2c(CC1)cccc2)NO	1,900	97	0	Train
A50	C(=O)(CC[NH+]1Cc2c(CC1)cccc2)NO	19,000	98,000	1	Test
A51	C(=O)(CCCC[NH+]1C(c2c(CC1)cccc2)c1ccccc1)NO	44	810	1	Train
A52	C(=O)(CC[NH+]1C(c2c(CC1)cccc2)c1ccccc1)NO	950	10,000	1	Train
A53	C(C[NH+]1C(c2c(CC1)cccc2)c1cccc(c1)OC)C(=O)NO	110	34,000	1	Train
A54	C(=O)(CC[NH+]1C(c2c(CC1)cccc2)c1ccc(cc1)C(F)(F)F)NO	190	27,000	1	Test
A55	C(=O)(CC[NH+]1C(c2c(CC1)cccc2)C1CCCCC1)NO	6,700	75,000	1	Test
A56	C(=O)(CC[NH+]1C(c2c(CC1)cccc2)c1ccc(cc1)C(C)(C) C)NO	480	29,000	1	Train
A57	C(=O)(CC[NH+]1C(c2c(CC1)cccc2)c1cccc2cccc12)NO	390	3,400	1	Train
A58	C(=O)(CC[NH+]1C(c2c(CC1)cccc2)c1ccc(cc1)c1ccccc1)NO	55	38,000	1	Train
A59	c1c(cc2c(c1)ccn2Cc1ccc(cc1)OC)C(=O)N[O-]	6.6	7,100	1	Train

^aCompound number; ^bRange of HDAC8 selectivity

					~ ~		~ ~		
	nAtomL AC	PubchemF P357	PubchemF P300	Pubchem FP2	GATS 6v	PubchemF P528	GATS 3s	PubchemF P713	BA(8/ 3)
nAtomLAC	1	0.39	0.73	0.25	-0.46	-0.56	0.62	-0.6	-0.77
PubchemF P357		1	0.44	-0.18	-0.43	-0.33	0.58	-0.22	-0.67
PubchemF P300			1	0	-0.27	-0.83	0.51	-0.31	-0.42
PubchemF P2				1	0.17	0.2	0.24	-0.31	-0.37
GATS6v					1	0.07	-0.32	0.4	0.51
PubchemF P528						1	-0.45	0.02	0.3
GATS3s							1	-0.4	-0.65
PubchemF P713								1	0.56
BA(8/3)									1

Table S2. Correlation matrix among biological activity and selected parameters of Eq. (1)

Table S3. *t*-Value and *p*-Value for Eq. (1)

	t(36)	<i>p</i> -level
Intercept	-2.274	0.029
nAtomLAC	-6.693	0.000
PubchemFP357	-13.182	0.000
PubchemFP300	8.014	0.000
PubchemFP2	-9.345	0.000
GATS6v	4.422	0.000
PubchemFP528	5.721	0.000
GATS3s	3.187	0.003
PubchemFP713	2.549	0.015

Table S4. R^2 and Q^2 values after several Y-randomization tests for Eq. (1)

MODEL TYPE	R	R ²	$Q^{2}_{(LOO)}$
Original	0.978	0.956	0.932
Random 1	0.619	0.383	-0.097
Random 2	0.616	0.380	-0.145
Random 3	0.477	0.228	-0.676
Random 4	0.490	0.240	-0.143
Random 5	0.492	0.242	-0.209
Random 6	0.451	0.203	-0.095
Random 7	0.329	0.108	-0.470
Random 8	0.419	0.176	-0.900
Random 9	0.520	0.271	-0.283
Random 10	0.522	0.273	-0.293

Random 11	0.486	0.236	-0.351
Random 12	0.307	0.094	-0.446
Random 13	0.298	0.089	-0.912
Random 14	0.379	0.144	-0.311
Random 15	0.431	0.186	-0.660
Random 16	0.493	0.243	0.002
Random 17	0.341	0.117	-0.322
Random 18	0.441	0.194	-0.507
Random 19	0.432	0.187	-0.327
Random 20	0.387	0.150	-0.354
Random 21	0.454	0.206	-0.538
Random 22	0.416	0.173	-0.392
Random 23	0.362	0.131	-0.801
Random 24	0.365	0.133	-0.301
Random 25	0.295	0.087	-0.351
Random 26	0.353	0.124	-0.335
Random 27	0.262	0.069	-0.360
Random 28	0.425	0.181	-0.287
Random 29	0.415	0.173	-0.252
Random 30	0.345	0.119	-0.399
Random 31	0.292	0.086	-0.674
Random 32	0.423	0.179	-0.222
Random 33	0.288	0.083	-0.437
Random 34	0.352	0.124	-0.232
Random 35	0.266	0.071	-0.759
Random 36	0.453	0.205	-0.264
Random 37	0.244	0.059	-1.515
Random 38	0.583	0.340	-0.046
Random 39	0.396	0.157	-0.277
Random 40	0.489	0.239	-0.175
Random 41	0.454	0.206	-0.542
Random 42	0.537	0.288	-0.152
Random 43	0.415	0.172	-0.427
Random 44	0.428	0.183	-0.638
Random 45	0.501	0.251	-1.405
Random 46	0.387	0.150	-0.398
Random 47	0.454	0.206	-0.150
Random 48	0.354	0.126	-0.409
Random 49	0.425	0.181	-0.448
Random 50	0.399	0.159	-0.508

Cpd a	nAtomLA C	PubchemFP3 57	PubchemFP3 00	PubchemF P2	GATS6 v	PubchemFP5 28	GATS3 s	PubchemFP7 13	ML R	SV M
7a	5	0	0	1	0.846	1	0.909	0	SEL	SEL
7b	5	0	0	1	0.977	1	0.931	0	SEL	SEL
7c	5	0	0	1	0.882	1	0.911	0	SEL	SEL
7d	6	0	0	1	0.898	1	0.893	0	SEL	SEL
7e	5	0	0	1	0.937	1	0.934	0	SEL	SEL
7f	5	0	0	1	0.887	1	0.912	0	SEL	SEL
7g	5	0	0	1	0.964	1	0.778	0	SEL	SEL
7h	5	0	0	1	0.925	1	0.932	0	SEL	SEL
7i	5	0	0	1	0.875	1	0.911	0	SEL	SEL
7j	5	0	0	1	0.952	1	0.994	0	SEL	SEL
7k	5	0	0	1	0.895	1	0.896	1	NS	SEL
71	6	0	0	1	0.909	1	0.880	1	NS	SEL

Table S5. The descriptors and predicted activity of designed inhibitors

^aCompound number; SEL, HDAC8 selective; NS, non-selective